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Testing a Class with Dependencies
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Class Under Test Dependency External Resource

Prepare a databaseInitiate the dependencyStart testing

Developers' focus

Can this be simplified?

123

AccountService UserRepository

Login request Does user exist? Query

ResultsYes / NoSuccess / Failed Heavy



Mocking in Unit Tests
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AccountService UserRepository

Login request Does user exist?

Yes / NoSuccess / Failed

Class Under Test Mock Dependency External Resource

Test the AccountService A mock UserRepository which
• Return false directly
• Without connecting to the database

false No need

Faster

12



Improper Mocking Decisions
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The unit tests for the camel-hazelcast component use real 
HazelcastInstance objects, which is very slow. We should 
use mock objects instead to speed up testing.

”
-- Issue 6826, Camel

Under-mocking
Did not mock a dependency that should be mocked

Side effect to the environment

Inefficient test execution

Flaky tests [1]

[1] Luo et al. An empirical analysis of flaky tests. [FSE 2014]



Improper Mocking Decisions (cont.)
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Mockito is used in SchedulerTestUtils to mock 
ExecutionVertex and Execution for testing. It fails 
to mock every getter so that other tests use it may   

encounter NPE issues.

”
-- Issue 16300, Flink

Over-mocking
Mock the dependencies that should not be mocked

False alarms

Increase development cost



Mocking Decisions Are Not Easy to Make

September 23, 2020 ASE 2020, Virtual Event, Australia 6

13% of the mocks are introduced later in the lifetime of the test class.

17% of these mocks are removed afterwards.

”
Spadini et al. Mock Objects for Testing Java Systems: Why and 
How Developers Use Them, and How They Evolve [EMSE 2019]

We highlighted the need to automate the process of identifying APIs that need 
to be mocked and dependencies between the identified APIs to ease the process 
of testing.

”
Marri et al. An Empirical Study of Testing File-System-
Dependent Software with Mock Objects [AST 2009]



We Aim to Answer…
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Which dependencies 
should be mocked?



Research Goal
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AccountService.java

UserRepository.java

JAVA

Class Under Test

Dependency

Automated Mechanism
Mocking Decision

Factors?



Existing Findings
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Software testers usually mock only a small number and portion of software 
dependencies. Software testers tend to mock source code classes than libraries.

”
Mostafa et al. An Empirical Study on the Usage of 
Mocking Frameworks in Software Testing [QSIC 2014]

Classes that deal with external resources are often mocked.
Classes that are slow and complex to setup are good candidates to be mocked.

”
Spadini et al. Mock Objects for Testing Java Systems: Why and 
How Developers Use Them, and How They Evolve [EMSE 2019]

Cannot automate
High-level, qualitative 



Empirical Study
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Projects Dataset Observations
4 large-scale, open-
source projects

50k test cases
354k data entries

5 observations

Data Extraction

< ", $%", &, ' >
!: The test case
"#!: The class under test
$: The dependency
%: The label

Random Sampling & 
Open Coding

Goal: Find code-level characteristics (rules) of the mocked dependencies

Data Entry

Formulation

Code-level Rules

10 rules

Automated Validation

Validate whether these rules can effectively 
select the entries labeled as mocked.



Empirical Findings – API Usage
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Classes related to environment or concurrency 
are often mocked.

Rule 1.1: Referencing environment-dependent or concurrent classes.

Rule 1.2: Encapsulating external resources.

Rule 1.3: Calling synchronized methods.

Networking, disk I/O, database, threading, access control,
e.g., File, InetAddress, ExecutorService

e.g., implements Closable, AutoClosable



Empirical Findings – Interactions

September 23, 2020 ASE 2020, Virtual Event, Australia 12

Dependencies affecting the runtime control flows of methods in CUTs
are often mocked.

if(endpointConfig.isOverWrite()){
oStream.info.getFileSystemn().delete(...);

} else {
throw new RuntimeCamelException(...);

}

when(endpointConfig.isOverWrite())
.thenReturn(false);

Class Under Test (in project Camel)

Test Script

true to cover the if branch

false to cover the else branch

Rule 4.1: Affecting CUT’s runtime control flows 
via return values.

Rule 4.2: Affecting CUT’s runtime control flows 
via exceptions.



Combining the Observations
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10 Code-level Rules

JAVA

Class Under Test

Dependency Machine Learning

< ", $%", &, ' >

Features

None of them 
is a determinant factor

MockSniffer



Features & Algorithms
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Class Meta-
properties, 

4

API Usage, 4
Complexity, 

3

Contextual 
Information, 

5

From observation 3 and existing work
e.g., Is it a JDK class?

From observation 1
e.g., How many call sites to a database API?

From observation 2
e.g., How many fields? 

From observation 4 & 5
e.g., Does it throw an exception caught by the CUT? • Gradient Boosting (Default)

• Random Forest
• Ada Boosting
• Decision Tree
• Support Vector Machine
• Naïve Bayes

AlgorithmsFeatures



Evaluation Subjects
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Research Questions

Effectiveness

1. Is MockSniffer more effective than existing strategies?

2. Does machine learning help? 

Application

3. Potential application scenarios? 

4. Performance in these scenarios? 



Baselines
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Baseline #1: Existing Heuristics
• Mock all the classes in the code base [2]
• Mock all the interfaces [3]
• Do not mock JDK classes [3]

Baseline #2: EvoSuite Mock List
• Mock all the classes in the EvoSuite [4] mock list

Baseline #3: Empirical Rules
• Mock if any of the rules in our empirical study matches

[2] Mostafa et al. An Empirical Study on the Usage of Mocking Frameworks in Software Testing. [QSIC 2014]
[3] Spadini et al. Mock objects for testing java systems: Why and how developers use them, and how they evolve. [EMSE 2019]
[4] Fraser et al. EvoSuite: automatic test suite generation for object-oriented software. [FSE 2011]
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MockSniffer Baseline #1: Existing Heuristics Baseline #2: EvoSuite Mock List Baseline #3: Empirical Rules
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MockSniffer vs. Baselines 

High recall

But low precision



Application Scenarios
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Cross-version Prediction
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Target: Mature Projects

…

Dataset Classifier

Training

PredictionData Extraction

Historical Releases Development Version

Real-world Scenario Experiment Setup

v1 v2 v3

• Train with historical releases
• Predict on new data entries

…



Cross-project Prediction
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Target: New Projects

Dataset Classifier

Training

PredictionData Extraction

Open-source Projects Development Version

Real-world Scenario Experiment Setup

• Train with 9 projects
• Predict on 1 project

Training

Testing



Comparison of Two Scenarios
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Cross-version Prediction

• Prec. 78.82%, Recall 60.63% (avg.)
• More focus, higher precision
• Catch the similarities within the project

Cross-project Prediction

• Prec. 72.65%, Recall 67.92% (avg.)
• More diverse, higher recall
• Can cover different mocking strategies

Recall in Oozie

Cross-version Cross-project

30.67% 62.93%2.1x

Large changes took place from 4.x to 5.x



Contribution
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1st 2
10 546k

Mock Recommendation 
Technique

Potential Application 
Scenarios

Code-level
Characteristics Large-scale Dataset
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ABSTRACT
In unit testing, mocking is popularly used to ease test e�ort, reduce
test �akiness, and increase test coverage by replacing the actual
dependencies with simple implementations. However, there are no
clear criteria to determine which dependencies in a unit test should
be mocked. Inappropriate mocking can have undesirable conse-
quences: under-mocking could result in the inability to isolate the
class under test (CUT) from its dependencies while over-mocking
increases the developers’ burden on maintaining the mocked ob-
jects and may lead to spurious test failures. According to existing
work, various factors can determine whether a dependency should
be mocked. As a result, mocking decisions are often di�cult to
make in practice. Studies on the evolution of mocked objects also
showed that developers tend to change their mocking decisions:
17% of the studied mocked objects were introduced sometime af-
ter the test scripts were created and another 13% of the originally
mocked objects eventually became unmocked. In this work, we
are motivated to develop an automated technique to make mock-
ing recommendations to facilitate unit testing. We studied 10,846
test scripts in four actively maintained open-source projects that
use mocked objects, aiming to characterize the dependencies that
are mocked in unit testing. Based on our observations on mock-
ing practices, we designed and implemented a tool, MockSni�er,
to identify and recommend mocks for unit tests. The tool is fully

∗This work was conducted when Hengcheng Zhu was a visiting student at HKUST (The
Hong Kong University of Science and Technology). The �rst two authors contributed
equally to this work.
†Yepang Liu and Shing-Chi Cheung are corresponding authors.
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automated and requires only the CUT and its dependencies as in-
put. It leverages machine learning techniques to make mocking
recommendations by holistically considering multiple factors that
can a�ect developers’ mocking decisions. Our evaluation of Mock-
Sni�er on ten open-source projects showed that it outperformed
three baseline approaches, and achieved good performance in two
potential application scenarios.

CCS CONCEPTS
• General and reference! Empirical studies; • Software and
its engineering! Software maintenance tools; Software test-
ing and debugging.
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1 INTRODUCTION
Unit testing has been widely adopted to assure the quality of pro-
gram units, namely classes, by testing them in isolation. In practice,
a class under test (CUT) is commonly coupled with other classes in
a program or its referenced libraries. These classes are the depen-
dencies of the CUT and often participate in its unit tests. Mocking
is a defacto mechanism to isolate the CUT from its dependencies
in a test by simulating the behaviors of the dependencies using
mocked objects [28]. It was reported that 23% of the Java projects
with test scripts use mocking [32].
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