
Characterizing & Recommending
Mocking Decisions for Unit Tests

Hengcheng Zhu, Lili Wei, Ming Wen, Yepang Liu, Shing-Chi Cheung,
Qin Sheng, and Cui Zhou

MockSniffer

September 23, 2020 ASE 2020, Virtual Event, Australia 1

Research Group
Code AnalysiS, Testing, and LEarning

ASE 2020
ONLINE CONFERENCE
21-25 SEPTEMBER 2020

Testing a Class with Dependencies

September 23, 2020 ASE 2020, Virtual Event, Australia 2

Class Under Test Dependency External Resource

Prepare a databaseInitiate the dependencyStart testing

Developers' focus

Can this be simplified?

123

AccountService UserRepository

Login request Does user exist? Query

ResultsYes / NoSuccess / Failed Heavy

Mocking in Unit Tests

September 23, 2020 ASE 2020, Virtual Event, Australia 3

AccountService UserRepository

Login request Does user exist?

Yes / NoSuccess / Failed

Class Under Test Mock Dependency External Resource

Test the AccountService A mock UserRepository which
• Return false directly
• Without connecting to the database

false No need

Faster

12

Improper Mocking Decisions

September 23, 2020 ASE 2020, Virtual Event, Australia 4

The unit tests for the camel-hazelcast component use real
HazelcastInstance objects, which is very slow. We should
use mock objects instead to speed up testing.

”
-- Issue 6826, Camel

Under-mocking
Did not mock a dependency that should be mocked

Side effect to the environment

Inefficient test execution

Flaky tests [1]

[1] Luo et al. An empirical analysis of flaky tests. [FSE 2014]

Improper Mocking Decisions (cont.)

September 23, 2020 ASE 2020, Virtual Event, Australia 5

Mockito is used in SchedulerTestUtils to mock
ExecutionVertex and Execution for testing. It fails
to mock every getter so that other tests use it may

encounter NPE issues.

”
-- Issue 16300, Flink

Over-mocking
Mock the dependencies that should not be mocked

False alarms

Increase development cost

Mocking Decisions Are Not Easy to Make

September 23, 2020 ASE 2020, Virtual Event, Australia 6

13% of the mocks are introduced later in the lifetime of the test class.

17% of these mocks are removed afterwards.

”
Spadini et al. Mock Objects for Testing Java Systems: Why and
How Developers Use Them, and How They Evolve [EMSE 2019]

We highlighted the need to automate the process of identifying APIs that need
to be mocked and dependencies between the identified APIs to ease the process
of testing.

”
Marri et al. An Empirical Study of Testing File-System-
Dependent Software with Mock Objects [AST 2009]

We Aim to Answer…

September 23, 2020 ASE 2020, Virtual Event, Australia 7

Which dependencies
should be mocked?

Research Goal

September 23, 2020 ASE 2020, Virtual Event, Australia 8

AccountService.java

UserRepository.java

JAVA

Class Under Test

Dependency

Automated Mechanism
Mocking Decision

Factors?

Existing Findings

September 23, 2020 ASE 2020, Virtual Event, Australia 9

Software testers usually mock only a small number and portion of software
dependencies. Software testers tend to mock source code classes than libraries.

”
Mostafa et al. An Empirical Study on the Usage of
Mocking Frameworks in Software Testing [QSIC 2014]

Classes that deal with external resources are often mocked.
Classes that are slow and complex to setup are good candidates to be mocked.

”
Spadini et al. Mock Objects for Testing Java Systems: Why and
How Developers Use Them, and How They Evolve [EMSE 2019]

Cannot automate
High-level, qualitative

Empirical Study

September 23, 2020 ASE 2020, Virtual Event, Australia 10

Projects Dataset Observations
4 large-scale, open-
source projects

50k test cases
354k data entries

5 observations

Data Extraction

< ", $%", &, ' >
!: The test case
"#!: The class under test
$: The dependency
%: The label

Random Sampling &
Open Coding

Goal: Find code-level characteristics (rules) of the mocked dependencies

Data Entry

Formulation

Code-level Rules

10 rules

Automated Validation

Validate whether these rules can effectively
select the entries labeled as mocked.

Empirical Findings – API Usage

September 23, 2020 ASE 2020, Virtual Event, Australia 11

Classes related to environment or concurrency
are often mocked.

Rule 1.1: Referencing environment-dependent or concurrent classes.

Rule 1.2: Encapsulating external resources.

Rule 1.3: Calling synchronized methods.

Networking, disk I/O, database, threading, access control,
e.g., File, InetAddress, ExecutorService

e.g., implements Closable, AutoClosable

Empirical Findings – Interactions

September 23, 2020 ASE 2020, Virtual Event, Australia 12

Dependencies affecting the runtime control flows of methods in CUTs
are often mocked.

if(endpointConfig.isOverWrite()){
oStream.info.getFileSystemn().delete(...);

} else {
throw new RuntimeCamelException(...);

}

when(endpointConfig.isOverWrite())
.thenReturn(false);

Class Under Test (in project Camel)

Test Script

true to cover the if branch

false to cover the else branch

Rule 4.1: Affecting CUT’s runtime control flows
via return values.

Rule 4.2: Affecting CUT’s runtime control flows
via exceptions.

Combining the Observations

September 23, 2020 ASE 2020, Virtual Event, Australia 13

10 Code-level Rules

JAVA

Class Under Test

Dependency Machine Learning

< ", $%", &, ' >

Features

None of them
is a determinant factor

MockSniffer

Features & Algorithms

September 23, 2020 ASE 2020, Virtual Event, Australia 14

Class Meta-
properties,

4

API Usage, 4
Complexity,

3

Contextual
Information,

5

From observation 3 and existing work
e.g., Is it a JDK class?

From observation 1
e.g., How many call sites to a database API?

From observation 2
e.g., How many fields?

From observation 4 & 5
e.g., Does it throw an exception caught by the CUT? • Gradient Boosting (Default)

• Random Forest
• Ada Boosting
• Decision Tree
• Support Vector Machine
• Naïve Bayes

AlgorithmsFeatures

Evaluation Subjects

September 23, 2020 ASE 2020, Virtual Event, Australia 15

September 23, 2020 ASE 2020, Virtual Event, Australia 16

Research Questions

Effectiveness

1. Is MockSniffer more effective than existing strategies?

2. Does machine learning help?

Application

3. Potential application scenarios?

4. Performance in these scenarios?

Baselines

September 23, 2020 ASE 2020, Virtual Event, Australia 17

Baseline #1: Existing Heuristics
• Mock all the classes in the code base [2]
• Mock all the interfaces [3]
• Do not mock JDK classes [3]

Baseline #2: EvoSuite Mock List
• Mock all the classes in the EvoSuite [4] mock list

Baseline #3: Empirical Rules
• Mock if any of the rules in our empirical study matches

[2] Mostafa et al. An Empirical Study on the Usage of Mocking Frameworks in Software Testing. [QSIC 2014]
[3] Spadini et al. Mock objects for testing java systems: Why and how developers use them, and how they evolve. [EMSE 2019]
[4] Fraser et al. EvoSuite: automatic test suite generation for object-oriented software. [FSE 2011]

Accuracy Precision Recall F1-score
0

10

20

30

40

50

60

70

80

90

100

MockSniffer Baseline #1: Existing Heuristics Baseline #2: EvoSuite Mock List Baseline #3: Empirical Rules

September 23, 2020 ASE 2020, Virtual Event, Australia 18

MockSniffer vs. Baselines

High recall

But low precision

Application Scenarios

September 23, 2020 ASE 2020, Virtual Event, Australia 19

Cross-version Prediction

September 23, 2020 ASE 2020, Virtual Event, Australia 20

Target: Mature Projects

…

Dataset Classifier

Training

PredictionData Extraction

Historical Releases Development Version

Real-world Scenario Experiment Setup

v1 v2 v3

• Train with historical releases
• Predict on new data entries

…

Cross-project Prediction

September 23, 2020 ASE 2020, Virtual Event, Australia 21

Target: New Projects

Dataset Classifier

Training

PredictionData Extraction

Open-source Projects Development Version

Real-world Scenario Experiment Setup

• Train with 9 projects
• Predict on 1 project

Training

Testing

Comparison of Two Scenarios

September 23, 2020 ASE 2020, Virtual Event, Australia 22

Cross-version Prediction

• Prec. 78.82%, Recall 60.63% (avg.)
• More focus, higher precision
• Catch the similarities within the project

Cross-project Prediction

• Prec. 72.65%, Recall 67.92% (avg.)
• More diverse, higher recall
• Can cover different mocking strategies

Recall in Oozie

Cross-version Cross-project

30.67% 62.93%2.1x

Large changes took place from 4.x to 5.x

Contribution

September 23, 2020 ASE 2020, Virtual Event, Australia 23

1st 2
10 546k

Mock Recommendation
Technique

Potential Application
Scenarios

Code-level
Characteristics Large-scale Dataset

MockSni�er: Characterizing and Recommending Mocking
Decisions for Unit Tests

Hengcheng Zhu∗
Southern University of Science and

Technology
Shenzhen, China

zhuhc2016@mail.sustech.edu.cn

Lili Wei∗
The Hong Kong University of Science

and Technology
Hong Kong, China
lweiae@cse.ust.hk

Ming Wen
Huazhong University of Science and

Technology
Wuhan, China

mwenaa@hust.edu.cn

Yepang Liu†
Southern University of Science and

Technology
Shenzhen, China

liuyp1@sustech.edu.cn

Shing-Chi Cheung†
The Hong Kong University of Science

and Technology
Hong Kong, China
scc@cse.ust.hk

Qin Sheng
WeBank Co Ltd
Shenzhen, China

entersheng@webank.com

Cui Zhou
WeBank Co Ltd
Shenzhen, China

cherryzzhou@webank.com

ABSTRACT
In unit testing, mocking is popularly used to ease test e�ort, reduce
test �akiness, and increase test coverage by replacing the actual
dependencies with simple implementations. However, there are no
clear criteria to determine which dependencies in a unit test should
be mocked. Inappropriate mocking can have undesirable conse-
quences: under-mocking could result in the inability to isolate the
class under test (CUT) from its dependencies while over-mocking
increases the developers’ burden on maintaining the mocked ob-
jects and may lead to spurious test failures. According to existing
work, various factors can determine whether a dependency should
be mocked. As a result, mocking decisions are often di�cult to
make in practice. Studies on the evolution of mocked objects also
showed that developers tend to change their mocking decisions:
17% of the studied mocked objects were introduced sometime af-
ter the test scripts were created and another 13% of the originally
mocked objects eventually became unmocked. In this work, we
are motivated to develop an automated technique to make mock-
ing recommendations to facilitate unit testing. We studied 10,846
test scripts in four actively maintained open-source projects that
use mocked objects, aiming to characterize the dependencies that
are mocked in unit testing. Based on our observations on mock-
ing practices, we designed and implemented a tool, MockSni�er,
to identify and recommend mocks for unit tests. The tool is fully

∗This work was conducted when Hengcheng Zhu was a visiting student at HKUST (The
Hong Kong University of Science and Technology). The �rst two authors contributed
equally to this work.
†Yepang Liu and Shing-Chi Cheung are corresponding authors.

ASE ’20, September 21–25, 2020, Virtual Event, Australia
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
This is the author’s version of the work. It is posted here for your personal use. Not
for redistribution. The de�nitive Version of Record was published in 35th IEEE/ACM
International Conference on Automated Software Engineering (ASE ’20), September 21–25,
2020, Virtual Event, Australia, https://doi.org/10.1145/3324884.3416539.

automated and requires only the CUT and its dependencies as in-
put. It leverages machine learning techniques to make mocking
recommendations by holistically considering multiple factors that
can a�ect developers’ mocking decisions. Our evaluation of Mock-
Sni�er on ten open-source projects showed that it outperformed
three baseline approaches, and achieved good performance in two
potential application scenarios.

CCS CONCEPTS
• General and reference! Empirical studies; • Software and
its engineering! Software maintenance tools; Software test-
ing and debugging.

KEYWORDS
Mocking, unit testing, recommendation system, dependencies

ACM Reference Format:
Hengcheng Zhu, Lili Wei, Ming Wen, Yepang Liu, Shing-Chi Cheung, Qin
Sheng, and Cui Zhou. 2020. MockSni�er: Characterizing and Recommending
Mocking Decisions for Unit Tests. In 35th IEEE/ACM International Conference
on Automated Software Engineering (ASE ’20), September 21–25, 2020, Virtual
Event, Australia. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3324884.3416539

1 INTRODUCTION
Unit testing has been widely adopted to assure the quality of pro-
gram units, namely classes, by testing them in isolation. In practice,
a class under test (CUT) is commonly coupled with other classes in
a program or its referenced libraries. These classes are the depen-
dencies of the CUT and often participate in its unit tests. Mocking
is a defacto mechanism to isolate the CUT from its dependencies
in a test by simulating the behaviors of the dependencies using
mocked objects [28]. It was reported that 23% of the Java projects
with test scripts use mocking [32].

September 23, 2020 ASE 2020, Virtual Event, Australia 24

THANKS
Presented by Hengcheng Zhu

hzhuaq@connect.ust.hk

Research Group
Code AnalysiS, Testing, and LEarning

Artifacts available at
https://aka.henryhc.net/mocksniffer

mailto:hzhuaq@connect.ust.hk
https://aka.henryhc.net/mocksniffer

