
Why Do Developers Remove Lambda Expressions
in Java?

Mingwei Zheng†§, Jun Yang¶, Ming Wen†§∗, Hengcheng Zhu‡, Yepang Liu‖, Hai Jin§]
†Hubei Engineering Research Center on Big Data Security, School of Cyber Science and Engineering

Huazhong University of Science and Technology, Wuhan, China
§National Engineering Research Center for Big Data Technology and System, Services Computing Technology and System Lab

Huazhong University of Science and Technology, Wuhan, China
¶School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, China

]Cluster and Grid Computing Lab, School of Computer Science and Technology, HUST, Wuhan, China
‡Dept. of Computer Science and Engineering, The Hong Kong University of Science and Technology, Hong Kong, China

‖Dept. of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
{zmw12306, claudeyangjun, mwenaa, hjin}@hust.edu.cn, hzhuaq@connect.ust.hk, liuyp1@sustech.edu.cn

Abstract— Java 8 has introduced lambda expressions, a core
feature of functional programming. Since its introduction, there
is an increasing trend of lambda adoptions in Java projects.
Developers often adopt lambda expressions to simplify code,
avoid code duplication or simulate other functional features.
However, we observe that lambda expressions can also incur
different types of side effects (i.e., performance issues and
memory leakages) or even severe bugs, and developers also
frequently remove lambda expressions in their implementations.
Consequently, the advantages of utilizing lambda expressions can
be significantly compromised by the collateral side effects. In this
study, we present the first large-scale, quantitative and qualitative
empirical study to characterize and understand inappropriate
usages of lambda expressions. Particularly, we summarized seven
main reasons for the removal of lambdas as well as seven common
migration patterns. For instance, we observe that lambdas using
customized functional interfaces are more likely to be removed
by developers. Moreover, from a complementary perspective, we
performed a user study over 30 developers to seek the underlying
reasons why they remove lambda expressions in practice. Finally,
based on our empirical results, we made suggestions on scenarios
to avoid lambda usages for Java developers and also pointed out
future directions for researchers.

Index Terms—Lambda Expression, Empirical Study

I. INTRODUCTION

Lambda expression [1] is an important functional feature,
which has been widely applied in functional programming
languages, such as Standard ML, Haskell, and so on. Plentiful
mainstream Object-Oriented Languages, such as Java, C++,
and C#, also support lambda expressions to parameterize
functionality with time evolves. Since the introduction of
lambda expressions in Java 8,1 there is an increasing trend
of lambda adoptions in open-source Java projects as revealed
by a recent study [2].

Utilizing the features of lambdas, developers have migrated
from anonymous classes to lambda expressions, and from
enhanced for loops to Streams. Unfortunately, with a wider

∗Ming Wen is the corresponding author.
1We use lambdas and lambda expressions interchangeably for simplicity.

1 synchronized DocumentsWriterDeleteQueue
2 advanceQueue(int maxNumPendingOps) {
3 ...
4 return new DocumentsWriterDeleteQueue(infoStream,
5 generation + 1, seqNo + 1,
6 () -> nextSeqNo.get() - 1);
7 }

Listing 1: Memory Leak Caused by Inappropriate Usage of
Lambda Expression (LUCENE-9478)

range of the adoptions of lambda expressions in Java, we
also observe an increasing number of misuses of them in
practice. In this study, we denote a misuse of lambda ex-
pression as the case where a lambda expression is used
inappropriately which causes side effects or even induces
bugs. Listing 1 shows an issue (i.e., LUCENE-9478 [3]) from
Apache Lucene, a large-scale and open-source project. In this
example, DocumentsWriterDeleteQueue is implemented to
advance the queue to the next one on flush, which uses a
lambda expression as one of its parameters. However, there
are 500 bytes of memory leakage on each full flush due to
the inappropriate usage of lambda expression. This is because
the lambda expression maintains an implicit reference to the
enclosing instance (the current queue object) at runtime in
order to access variable nextSeqNo, which is not defined in
the lambda body. Therefore, on each flush, the new queue will
unfortunately keep a reference to the outdated queue which
is no longer needed, thus preventing it from being garbage
collected. Consequently, memory leaks were observed by de-
velopers. Such an issue is reported on JIRA for discussion and
marked as the type of Bug with the priority of Blocker, which
reflects the significance of this issue. To fix it, developers
have removed such a lambda expression in this context, and
replaced it with an invocation to a static method.

We observe it is pervasive that developers change a lambda
expression back into a conventional implementation after
introducing it in large-scale open-source projects. For instance,

0
1000

2000
3000

4000

5000
6000

2013 2014 2015 2016 2017 2018 2019 2020 2021

Re
m
ov

ed
La
m
bd

as

Figure 1: The Trend of Lambda Removals. The number is
computed on 103 open-source projects as described in Section III-A.

in project Apache Camel [4], we found that 154 lambda
expressions have been removed during the last year. Such a
number is 784 in project Apache Geode [5], which indicates
that more than two lambdas have been removed in this project
each day on average. Meanwhile, We found that the behavior
of developers to delete lambdas is increasing year by year
as shown in Figure 1. Worse still, we observe that lambda
expressions can often be misused, in which case lambdas will
either induce bugs or cause side effects, such as efficiency
issues or memory leaks. Therefore, it arouses our great interest
to investigate the characteristics of the lambda expressions that
are inappropriately used and removed by developers.

Despite its significance and pervasiveness, little is known
about the misuse of lambda expressions in Java. In particu-
lar, there is still limited empirical knowledge towards what
lambdas are often removed by developers, why do devel-
opers remove lambdas, and the migration patterns adopted
by developers to remove them. The lack of such knowledge
impacts negatively for Java developers to correctly use lambda
expressions in practice. This study aims to bridge this gap.
Specifically, we performed a quantitative and a qualitative
study to investigate the above-mentioned questions. In the
quantitative study, we conducted a large-scale empirical study
based on 103 Apache projects to understand the characteristics
of those lambda expressions that were removed by developers.
Specifically, we collected 3,662 real cases of such lambdas and
analyzed their characteristics quantitatively. We then compared
the characteristics with those of lambdas that have been kept
in a project from beginning to end. Our qualitative analysis
aims to answer the following research question:

RQ1: What lambda expressions are more frequently re-
moved by developers? We found that lambdas built on top
of customized functional interfaces, passed to self-defined
method invocations are more likely to be removed. In addition,
non-empty argument lambdas with more complex bodies are
much more likely to be refactored.

In the qualitative study, we performed two separate experi-
ments with in-depth analysis. First, we collected 92 real issues
caused by lambda misuses from large open-source projects,
and then analyzed such issues manually to characterize the
removal reasons, impacts, and code migration patterns of those
inappropriate lambdas. Second, we designed and conducted a
survey with experienced Github contributors, from a comple-
mentary perspective, to further understand the insights why
developers remove lambdas and got 25 additional issues in
total. With these two experiments, we aim to answer the
following research questions:

(int x) -> {
return x*2;

}

x -> x*2
@FunctionalInterface
public interface IntOp {
int apply(int value);

}

Parameter List

Lambda Body

Figure 2: Lambda Expressions and the Corresponding Func-
tional Interface

RQ2: Why do developers remove lambda expressions in
practice? What are the reasons behind and impacts? We
found seven common reasons for lambda removals, including
but not limited to performance degradation, poor readability,
serialization issues, and lazy evaluation issues.

RQ3: What are the migration patterns of the inappropriate
usages of lambda expressions? We summarized seven major
migration patterns and analyzed the relationship with removal
reasons. Our results show that there are common migration
patterns for most kinds of lambda misuses, which can facilitate
developers to fix those issues caused by inappropriate lambdas.
Besides, in order to help developers avoid lambda misuse from
the beginning, we summarized five pieces of actionable advice
for utilizing lambda expressions appropriately.

The usefulness of this study is well recognized by develop-
ers. As mentioned by one developer from Apache Calcite [6],
“Awesome work you are doing”. Meanwhile, our empirical
results are anticipated by some developers: “I would be appre-
ciated if you can share your findings of the subject”, “Thanks
for the question and for pointing out the issue”, “Where will
I be able to read about your results”. Hence, we believe
this study can shed light on the better utilization of lambda
expressions for Java developers in practice. In summary, this
study makes the following major contributions:
• Originality: To our best knowledge, we are the first

to comprehensively study the inappropriate usages of
lambda expressions in Java.

• Quantitative Analysis: We collected 3,662 cases of re-
moved lambdas and compared their characteristics with
31,288 kept ones and found that lambda expressions
that are large in their sizes, built on top of customized
functional interfaces, passed to self-defined method invo-
cations are more likely to be removed.

• Qualitative Analysis: We collected 117 real-world issues
and conducted a user study to explore the reasons, im-
pacts, and migration patterns of lambda removals. We
also generate actionable advice to guide Java program-
ming with lambda expressions.

• Dataset: We open sourced our collected datasets and
the experimental results to facilitate future concern-
ing researches, which is available at GitHub: https:
//github.com/CGCL-codes/LambdaMisuse.

II. BACKGROUND AND MOTIVATION

A. Lambda Expressions

To support functional programming, Java 8 has introduced
several functional idioms. For instance, it re-designs the inter-
face, introduces lambda expression, retrofits the Collection

https://github.com/CGCL-codes/LambdaMisuse
https://github.com/CGCL-codes/LambdaMisuse

framework, and introduces the Stream API. This evolution
enables developers to embrace various advantages from both
Object-Oriented programming and functional programming.
Consequently, there is an increasing trend in the adoption
of such functional idioms in open-source Java projects. The
usage of certain new Java 8 API methods, especially the
Stream API, heavily relies on the usage of lambda expressions.
For instance, most Stream operations accept parameters that
describe user-specified behaviors, which are often in the form
of lambda expressions [7]. Therefore, according to an existing
study [8], lambda expression is the most accepted function
idiom, being accepted by 16% of the investigated projects
while the other features, such as the Stream API, are accepted
by no greater than 3% of the investigated projects. Due to such
a high accept ratio of lambdas and their significance, we put
our focus mainly on lambda expressions in this study.

A lambda expression is composed of three parts: parameter
list, the arrow token (i.e., →), and a lambda body. The
parameter lists are similar to the formal parameters of a regular
method except that the type information can be omitted if
it can be inferred by the compiler and the parentheses can
be omitted when there is exactly one parameter. The lambda
body should be either an expression, or a code block similar
to the body of a regular method. In Java, a lambda expression
can be assigned to a variable or be passed to a method as an
argument if the corresponding type is a functional interface,
which contains only a single abstract method. Figure 2 shows
an example of lambda expressions that doubles the given
integer and their corresponding functional interface.

There are several studies trying to understand the usages
of lambda expressions in Java. Specifically, Mazinanian et
al. presented the first large-scale empirical study on how
developers use lambda expressions in Java since its introduc-
tion [2]. They observed an increasing trend in the adoption of
lambdas in Java. Specifically, developers often employ lambda
expressions to simplify source code, avoid code duplication
and simulate lazy evaluations. Matsumoto et al. conducted a
study to explore the current use status of functional idioms in
Java [8]. Their statistical results show that lambda expressions
are more widely utilized than Stream and Optional in Java
programming. Especially, they discovered that most developers
write lambda expressions for good readability and better
performance, while refusing them due to the complications
when handling exceptions and compatibility issues. Although
it is common wisdom that refactoring a legacy code to a
lambda expression might simplify code and enhance pro-
gram comprehension, Lucas et al. made contradictory ob-
servations [9]. Specifically, they found no evidence that the
introduction of lambda expressions can improve program com-
prehension via qualitative and quantitative analysis. Gyori et
al. implemented LambdaFicator to enable automatic refactors:
anonymous classes to lambda expressions, for loops that iterate
over Collections to functional operations that use lambda
expressions [10]. Alqaimi et al. designed LAMBDADOC to
automatically generate documents for lambda expressions to
help readers better understand their functionalities [11]. Be-

sides, Tsantalis et al. investigated the applicability of lambda
expressions for the refactoring of clones with behavioral
differences [12], and found that lambda expressions enable
the refactoring of a significant portion of clones that could
not be refactored by any other means.

B. Misuse of Lambda Expressions

With an increasing number of lambda expressions adopted
in Java, we also observe that the usages of them might cause
side effects or even induce bugs. Listing 1 shows an example.
Actually, similar issues can be frequently observed among
popular open-source projects. For example, in Apache My-
Faces Core, we observed excessive object allocations (around
1,000,000 object instances) caused by inappropriate usage of
lambda expressions that are invoked many times [13]. Besides,
we also notice several serialization issues in Apache FLINK
caused by lambda expressions [14], [15]. Unfortunately, there
is no systematic study that has comprehensively investigated
and understood the inappropriate usages of lambda expressions
in Java. This study aims to bridge this gap.

Be noted that lambda expression is just a type of syntactic
structure, which is often used under certain contexts with
other code structures, such as the Stream API. Therefore, the
side effects of lambda expressions can be collectively affected
by their structures and contexts. Actually, we also tried to
investigate the misusages of lambda expression itself excluding
its contexts. However, most of the incorrect usages caused by
itself (more than 80%) are syntactic issues, which are often
manifested as compilation errors. Specifically, we collected
186 issues from Stack Overflow related to the inappropriate
usages of lambda expressions without considering their con-
texts, and found that 80.65% of them led to compilation fail-
ures.2 Such syntactic compilation failures are relatively easier
for developers to debug and resolve, and thus the research
value is limited. Besides, it is rare to observe such issues
in real open-source projects since they are often guaranteed
to be compiled successfully when released to the market.
Therefore, we take the contexts of lambda expressions into
consideration, especially the usages of other functional idioms,
i.e., Stream API, Collections API, etc. This enriches our
research scope and enables us to understand the side-effects
of lambda expressions with respect to their semantics. It
also can provide more in-depth guidance for developers to
better use lambda expressions under certain scenarios. We also
considered conducting a comprehensive study on all the Java
functional idioms. However, collecting such data is not an
easy task, which often contains too many noises. For instance,
while searching the keyword “Stream” on JIRA, most items
returned are related to the Java Process Streams instead of
the Stream API. Therefore, in this study, we put our focus on
the side-effects caused by lambda expressions as well as their
contexts, including the functional APIs that rely on them. In
the following parts of this paper, we will clearly distinguish

2We provide the details of such empirical results over Stack Overflow on
https://github.com/CGCL-codes/LambdaMisuse

lambda expressions and the functional APIs while explaining
our findings.

III. CHARACTERIZING THE REMOVED LAMBDAS

In this section, we aim to answer RQ1 by characterizing
the lambda expressions that have been removed by devel-
opers. Specifically, we constructed two datasets containing
the lambda expressions that are, respectively, removed and
kept by developers. By comparing the characteristics of the
lambda expressions in the two datasets, we can answer RQ1
by presenting the potential factors that make the developers
prone to remove a lambda expression.

A. Data Collection

In order to characterize the lambda expressions that were
removed by developers, we need to first collect a dataset
containing the removed ones, which is denoted as follows:

Removed lambda expressions. Includes lambda expres-
sions that were removed by developers in order to address
certain issues. Be noted that removal of lambda expressions
due to simply functional deletion is excluded from our scope.
Our aim is to collect a set of lambda expressions that are
representatives of those misused by developers.

To enable a comprehensive understanding of the character-
istics of those removed lambdas, we also collect the following
dataset for comparison.

Kept lambda expressions. Includes lambda expressions
that have been kept in the project for a long term, which are
more likely to be those used correctly by developers.

By comparing the lambda expressions in the above two sets,
we can draw a picture of what kind of lambda expressions
are likely to be misused and thus should be removed from the
projects. Next, we present the data collection process in detail.

1) Project Selection: We select projects from the Apache
Software Foundation (ASF) because they are well maintained:
they follow a rigorous project management strategy so that we
can extract more useful information about the code changes in
the commit messages. Specifically, we selected 103 actively
maintained Java projects that contain at least 1,000 commits
and 10 committers from the ASF project list [16]. On the
one hand, a sufficient number of commits guarantees enough
code changes for our empirical study. On the other hand, the
requirement towards the committers ensures diversified code
practices in the projects. Such diversities are important to
guarantee the generality of our dataset. As shown in Figure 3,
our selected projects have commits ranging from 1.0k to 51.8k
(8.71k on average), and have different committers ranging
from 10 to 230 (40 on average), which shows that they are
large and diversified sufficient.

2) Collecting Removed Lambda Expressions: To identify
the removed lambda expressions by developers, we utilized
GumTree [17], an AST-based code differencing tool, to ana-
lyze those commits that modify Java source files. Since there
can be multiple changes to a file in a single commit, when
analyzing a commit, we further looked into the edit hunks [18]
of the code diff and extracted the removed lambda expressions

2048 8192 32768

(a) # of Commits

16 32 64 128 256

(b) # of Committers

Figure 3: Commits and Committers of the Selected Projects

at the hunk level, which enables us to apply the following rules
to improve the soundness of our dataset.
• We excluded those commits modifying more than 20 source

files since they are likely to be tangled with multiple inten-
tions [19], thus introducing noises of irrelevant changes.

• We keep only the commits that either contain an issue ID,
or have keywords that may describe an issue (e.g., bug, fix)
in its commit message. Such commits are likely to be made
to fix an issue. The complete list is available on our page.3

• Merge commits are excluded as they aggregate multiple
changes from other branches and are considered redundant.

• We ignored the hunks in which more than 50% of the mod-
ified lines are irrelevant to the removed lambda expression
since they may not focus on lambda expressions. Instead, the
lambda might be deleted in collateral with other changes.

• We ignored the hunks that only delete source code since the
intention of such changes is more likely to be functionality
detection instead of removing misused lambda expressions.
Be noted that rigorous rules have been adopted here to

collect removed lambdas since our goal is to collect a dataset
of high-quality which contains lambda expressions removed
by inappropriate usages. Noises can still be inevitable, while
we have made our best efforts to collect such a dataset. Finally,
we collected 3,662 cases of removed lambda expressions.

3) Collecting Kept Lambda Expressions: In addition, we
collected lambda expressions in our selected projects that are
kept by developers, which are considered as representatives of
the correctly used ones. Specifically, we applied the following
rules to filter such lambda expressions.
• It must still exist in the latest version of the code repository.
• It must have stayed in the project for a sufficiently long

time since its introduction. In this paper, we consider 24
months to be sufficiently long since it has been revealed
that bugs can be usually exposed and repaired within 24
months [20], [21]. Besides, most of the removed lambda
expressions (97.37%) collected by us have stayed in the
project for less than 24 months as shown in Figure 4a.

• Lambda expressions introduced in commits that modify
more than 100 files are excluded since they are usually
introduced by large-scale refactoring.
By adopting the above process, we obtained a dataset

containing 31,228 kept lambda expressions.

B. Methodology

To answer RQ1, we first inspect the lifetime of the removed
lambda expressions. Specifically, for each case, we calculated

3https://github.com/CGCL-codes/LambdaMisuse

the time period it has stayed in the project. Additionally, we
extracted several features of lambdas that may relate to the
removal of it from the following three different perspectives:

The usages of functional interfaces. There are 43 func-
tional interfaces introduced into JDK 8, providing plentiful in-
put/output parameter combinations and covering a wide range
of functionalities. Besides, developers can also implement their
own customized functional interfaces to enable throwing ex-
ceptions or extending other interfaces. We investigated whether
those lambda removals are related to the usages of different
functional interfaces.

The complexity of lambda expressions. From our dataset,
we observed that some lambda expressions are removed due to
the poor readability caused by their large sizes. Therefore, we
are motivated to explore whether complexity can be a factor
related to the removal of a lambda expression. Specifically, we
measure the complexity of a lambda expression with respect
to four different aspects: number of parameters, lines of code,
the height of the AST of the lambda body, and the number of
variables accessed in the lambda body.

The contexts of lambda expressions. We investigated
whether a lambda expression is likely to be removed under
certain contexts, such as the locations and the type of code
structures where lambda expressions are used. We found
that both kept and removed lambda expressions are mostly
used in method invocations. Specifically, the ratio of method
invocation is 85.64% for removed lambdas and 85.13% for
kept ones. Therefore, we are motivated to analyze the method
APIs which invoke the lambda expressions, and see whether
the utilized APIs are different over removed and kept lambdas.

Note that when extracting features such as the fully qualified
name of functional interfaces, we need to compile the whole
project to resolve the type information and method binding.
However, some of the revisions may fail to compile. Therefore,
for certain features, the analysis is performed on the revisions
that can be compiled (including 1,847 removed lambdas and
17,823 kept ones), which is our best effort.

C. Empirical Results

1) Lifetime of removed lambdas: We investigated the life-
time of the removed lambdas, 38.26% (1,401 out of 3,662)
of the lambdas have survived no longer than one month.
However, 20.23% (741 out of 3,662) of the lambdas are
removed after more than one year. Especially, we found one
lambda has lived as long as 61 months before its removal.
Such results reveal that inappropriate usages of lambdas can
be removed as quickly as certain side effects are observed.
However, some lambdas can be long-lived in the project,
continuously affecting the project until it is discovered by
developers, for example, performance degradation.

2) The usage of functional interface: As shown in Figure 5,
35.68% of the removed lambdas are implemented on top of
customized functional interfaces (i.e., functional interfaces that
are defined by developers) while that ratio is only 28.03%
among kept ones. Such a high ratio difference indicates that
customized functional interfaces are more likely to be misused.

A Chi-Square test [22] of independence was performed to
examine the relation between the removal of lambda expres-
sions and usage of customized functional interface, which
reveals that the relation was significant at the significance level
of 0.05, χ2(1, n = 19, 670) = 47.49, p = 5.52 × 10−12.
The effect size ϕ was 0.05, indicating that the magnitude
of the effect is small. This is because customized functional
interfaces mostly define more complex functionalities that are
not implemented by the current built-in functional interfaces,
and thus are much easier to introduce bugs. Besides, built-in
functional interfaces are defined with specific functionalities
and usually used together with built-in APIs, e.g., Stream API
with lambdas. Therefore, using such well-defined interfaces is
less likely to introduce issues.

Finding #1: Lambda expressions built on top of customized
functional interfaces are more likely to be removed.

3) The complexity of lambda expressions: We measure the
complexity of lambda expressions from four perspectives as
mentioned above. The measure of parameter number is shown
in Figure 6 while the statistics of the other three are depicted
in Figure 4 (clipped down outliers exceeding µ+3σ). It shows
that removed lambdas (38.34%) have a higher percentage
of empty argument lambda (lambda expressions that do not
receive any argument) than kept ones (30.75%). Similarly, we
applied the Chi-Square test [22], and observe the relation is
significant at the significance of 0.05 with a small effect size of
0.05. Besides, for empty argument lambdas, we observed that
removed lambdas have significantly fewer lines and smaller
body depth than kept ones as shown in Figure 4c and Figure 4d
with a p-value of 2.44× 10−16 and 8.91× 10−28 respectively
by the Mann-Whitney U Test [23]. One possible reason is
that empty argument lambdas with terse bodies can always be
easily refactored to method reference for code simplification.

As for non-empty argument lambdas, removed lambdas
occupy more lines of code than kept ones as shown in Figure
4b (p-value=2.47×10−12 at the significance level of 5% by the
Mann-Whitney U Test [23]). In other words, for such lambdas,
occupying more lines of code or having a more complex body
tend to exhibit a higher probability to be removed. That is
not a surprise because lambda expressions aim at providing
a lightweight mechanism to deliver functionalities [24], while
lambdas with complicated structures violate such a philosophy.

We also investigated the number of variables inside lambda
bodies. As shown in Figure 4e, kept lambdas contain 4.89
variables on average while removed lambdas contain 5.49
variables. The Mann-Whitney U test [23] reveals that kept
lambdas have significantly fewer variables in their body than
removed lambdas at the significance of 5% (p-value=0.0036).

Finding #2: Empty argument lambdas has a larger possibil-
ity to be removed, while non-empty argument lambdas with
more complex bodies are more likely to be refactored.

4) The contexts of lambda expressions: We inspect the
contexts of lambda expressions as follows. First, we investigate

0

20

40

60

Kept Removed

N
um

be
r

(a) Life Time of Kept and Re-
moved Lambda Expressions

2

8

32

Kept Removed

N
um

be
r

(b) Line Number of Removed and
Kept Lambdas with Parameters

1

2

4

8

16

Kept Removed

N
um

be
r

(c) Line Number of Lambdas with-
out Parameters

1

2

4

8

Kept Removed

N
um

be
r

(d) Lambda Body Depth of Lamb-
das without Parameters

1

2

4

8

16

Kept Removed

N
um

be
r

(e) Variable Number of Kept and
Removed Lambdas

Figure 4: Comparison between Removed and Kept Lambdas

64.32%

71.97%

32.62%

49.68%

30.17%

38.81%

35.68%

28.03%

67.38%

50.32%

69.83%

61.19%

0% 20% 40% 60% 80% 100%

Removed

Kept

Removed

Kept

Removed

Kept

Bu
ilt

-In
Fu

nc
tio

na
l

In
te

rf
ac

e?
JD

K
AP

I?
Ca

pt
ur

ed
Va

ria
bl

es
?

Yes No

Figure 5: Comparison between Removed and Kept Lambdas

0

500

1000

1500

2000

0 1 2 3 4 5 >=5

Removed

0

5000

10000

15000

20000

0 1 2 3 4 5 >=5

Kept

Figure 6: Parameter Numbers of Kept and Removed Lambdas

what specific APIs lambdas are often passed to. Figure 5
shows that lambda expressions passed to self-defined methods
are more likely to be removed by developers (i.e., 67.38%
vs 50.32%). A Chi-Square test reveals that the removal of
lambda expressions is significantly correlated with whether
the invoked method is self-defined or not with a p-value of
p = 8.50 × 10−46 and a small effect size of 0.10. One
possible reason is that APIs defined in JDK are a safer context
for lambdas. For those lambdas passed to built-in APIs, we
further dissect the distributions of specific APIs and show our
result in Table I. We found that lambdas passed to APIs of
Map#computeIfAbsent and Optional#ifPresent are more
likely to be removed than those passed to other APIs. On the
contrary, lambdas passed to Stream#map and Stream#filter
are less likely to be removed. It is because that the Stream API
was designed to mainly work with lambdas. The manner to
write lambdas in Stream API methods is also well defined. On
the contrary, Optional was not designed with the functional
programming style instead although it was also introduced in
Java 8. Meanwhile, implementing with Optional is some-
times more complex than that with conventional if else
for branch logic processing [25]. For the same reason, Map,
which was introduced since JDK1.2, is not as compatible with
lambda expressions as Stream API. Therefore, if developers

Table I: APIs that Lambda Expressions Are Passed To

API Removed Kept Difference
Iterable.forEach 13.78% 12.65% 1.13%
Stream.map 8.49% 13.93% -5.44%
Map.computeIfAbsent 7.69% 4.57% 3.12%
Optional.ifPresent 7.05% 2.07% 4.98%
Stream.forEach 5.29% 4.96% 0.33%
Stream.filter 5.29% 14.20% -8.91%
Collectors.toMap 4.49% 4.70% -0.21%
Map.forEach 4.01% 3.50% 0.51%
ExecutorService.submit 3.69% 2.59% 1.10%
Optional.map 3.53% 1.51% 2.02%
IntStream.forEach 2.40% 1.48% 0.92%

intend to call lambda expressions within JDK built-in methods
in the functional programming style, Stream API is a better
choice, and thus lambda expressions used in Stream API are
less likely to be removed in practice.

Finding #3: Lambda expressions that are built on top
of customized functional interfaces, passed to self-defined
method invocations are more likely to be removed.

IV. CONCERNS AND ACTIONS OF DEVELOPERS

In this section, we investigated the concerns of the develop-
ers when removing a lambda expression and the migration pat-
terns afterwards. Specifically, we analyzed the issue descrip-
tions from the issue trackers and commit messages to figure
out the reason why developers remove a lambda expression.
On the other hand, we also looked into the code changes of
fixes to explore how developers fix the problem induced by
the improper usages of lambda expressions. To have a deeper
understanding of the reasons behind the removals of lambda
expressions, we also communicated with some developers who
removed lambda expressions in our subjects. Finally, we found
seven common reasons for removing lambda expressions and
seven major migration patterns. We present the details of the
empirical results as follows.

A. Data Collection

We collect a dataset of issues from the following sources
to understand the reason behind the removal of a lambda ex-
pression and the action taken by developers after the removal.

Apache JIRA. Most Apache open-source projects track
their issues on the JIRA issue tracker. Therefore, we search
the issues on JIRA using the following query to collect the
issue related to lambda expressions.

status in (Resolved, Closed) AND text ˜ "lambda"

The query returned 6,647 items. we further filter out issues
in which the keyword lambda only appears in stack traces,
and those associated with Python lambda. We obtained 1,175
issues afterwards and manually validate them to see whether
they contain sufficient information for us to understand the
behind reasons. Finally, 25 issues are kept.

Code Commits. Not all the fixes for improper usage of
lambda expressions are tracked in Apache JIRA. Meanwhile,
the associated issues may not use the keyword “lambda” in
the issue summary or description, thus escaping from our
queries. In this study, we also search the commit messages
of the commits that remove a lambda expression and contains
certain keywords (i.e., lambda, bug, fix, issue, fixup, problem,
abuse, error, optimize, etc). Such commits are likely to fix a
problem by removing a lambda expression. We finally kept 60
of such collected commits after manual validation.

GitHub Issues. Apart from JIRA, part of the issues in
our subjects are tracked on GitHub for discussion. Therefore,
we searched the GitHub issues of our subjects with keyword
lambda and then manually selected the issues containing
sufficient information. We obtained seven issues in this step.

User Study. We further communicated with developers
asking for the details about the removal of lambda expressions.
Specifically, we discussed with developers, who have recently
removed lambdas in open-source projects (we automatically
mined such information via monitoring the commit histories
of the 103 projects), on the reason for removing the lambda
expression, the impacts caused by the lambda expression, and
scenarios in which they would avoid using lambda expressions.
Specifically, we sent 364 emails to the developers which have
recently removed lambda expressions and got in touch with
38 of them, with a response rate of 10.4%. We retained those
responses with clear descriptions and got 25 issues included.

In total, we collected 117 issues for exploring the concern
and actions of the developers while removing lambda expres-
sions, including 25 from Apache JIRA, 60 from code commits,
seven from GitHub issues, and 25 from User Study.

B. Analysis Approach

For the collected data collection, we performed a process
similar to open coding [26] to identify common reasons for
removing lambda expressions as well as the migration patterns.
For data collected from Apache JIRA, Code Commits, and
GitHub Issues, we read the descriptions of the issues or
commit messages to understand the reason for the removal.
For data collected in the user study, we extract the removal
reasons from email replies. Besides, we read the code diff
for all the data to find common migration patterns. In the
classification process, two authors inspected and labeled the
dataset independently and they discussed with each other to
reach a consensus when there is a conflict.

After the analysis, we summarized the results of our quali-
tative study in this Section from two perspectives: the reasons
why such lambdas are deemed as misused and the associated
impacts, and the migration patterns adopted by developers to

0 5 10 15 20 25 30 35

Other
Lazy Evaluation

Maintenance Issues
Type Inference Failure

Poor Extensibility
Serialization Issues

Poor Readability
Performance Degradation

Real Issues Developer Response

Figure 7: Reasons of Removing Lambda Expressions

replace such removed lambdas. We present our results in the
following two subsections.

C. Reasons for Misusing Lambda Expressions

We summarized seven major reasons (with over five cases
for each reason) that why lambdas are deemed as misused
by developers and the associated impacts. Figure 7 shows the
statistics and we present the details as follows:

Performance Degradation (29/117). Performance degrada-
tion is one of the most crucial reasons that why developers
remove lambda expressions. Specifically, nearly 25% of the
lambdas in our study are removed since their usages intro-
duced performance issues. Such lambdas will be removed
if such side effects are significant and perceived by devel-
opers. The most common inappropriate lambda usages that
cause performance issues is invoking lambdas in computation-
critical code, especially for captured lambdas which access
variables outside the lambda body. For captured lambdas
with multiple invocations, although the lambda class is only
created once on the first invocation, each invocation will
create a new lambda instance. This may introduce excessive
object allocations and bring significant pressure to the garbage
collector. Therefore, a developer in Apache Lucene removed
such lambdas to avoid memory allocation for each invocation
of collectValFirstPhase [27]. Furthermore, as shown in
Listing 1, the lambda expression will hold a reference to their
enclosure instance when it accesses the enclosing instance’s
non-static fields and methods, thus causing memory leaks.

Actually, the new Java 8 API methods (i.e., Collections,
Stream, and Optionals) can also introduce performance
differences when they are used with lambdas. Although it is
still controversial whether the performance of using lambdas
with such Java 8 API methods is worse than their counterpart
implementations in diverse scenarios [2]. There are many real
issues which refactor these usages into conventional ways (i.e.,
for loop, do while, enhanced for loops, if else, etc)
due to the excessive CPU cycles and non-trivial memory
allocation overhead based on performance test results [28].

Poor Readability (28/117). Poor readability is another
important reason for lambda removals in our dataset. Such
lambda expressions usually have a long body or contain
complex logic, setting obstacles for developers to understand
them. Worse still, lambda expressions are anonymous, and
thus the intention of a lambda expression is far more difficult
to understand than a method. Besides, the syntax of lambda
expressions looks less compact than that of method reference.

1 - .collect(Collectors.groupingBy(url -> { ... }));
2 + .collect(Collectors.groupingBy(this::judgeCategory));
3 + private String judgeCategory(URL url) {
4 + // The same as the lambda body
5 + }

Listing 2: Replacing a Lambda with a Method to Improve
Readability (Commit#9e9517d, Project Dubbo)

1 - .apply(o -> Collections.emptyList());
2 + .apply(
3 + new MultimapView() {
4 + @Override public Iterable get() { ... }
5 + @Override public Iterable get(Object o) { ... }
6 + });
7

8 public interface MultimapView<K, V> {
9 + Iterable<K> get();

10 Iterable<V> get(@Nullable K k);
11 }

Listing 3: Switching from Lambda to Anonymous Class for
Better Extensibility (PR#10147, Project Beam)

Therefore, developers sometimes tend to remove lambda ex-
pressions to improve readability as well as make the code
more compact. For example, in Listing 2, developers in project
Dubbo replaced a lambda containing more than 10 lines of
code with a method to make it more readable as shown in the
description: simplify “collect” body to make it more readable.
Our finding is also confirmed by developers in the user study
as a developer in project Apache Calcite [6] mentioned that:
“I generally dislike long lambdas due to bad readability.”

Serialization Issues (16/117). There are 16 lambda expres-
sions in our dataset that are removed due to serialization issues.
Since Java 8, one can make a lambda expression serializable
by extending Serializable in its corresponding functional
interface. Serializing lambdas can be used for persisting con-
figuration, or as a visitor pattern to remote resources [29].
However, this is strongly discouraged according to the Java
Language Specification [30] because the serialization behavior
of synthetic class (what will be created when compiling a
lambda expression) can vary among JVM implementations,
which can cause compatibility issues when the bytes serialized
on one JVM are shipped to another JVM to deserialize, and
vise versa. For instance, a developer successfully serialized
a lambda and shipped the byte code via RemoteGraph to a
remote server, but can not deserialize it on the new server [31].

Poor Extensibility (13/126). During code evolution, func-
tional interfaces can be evolved to accept no lambda any
more. In this case, a lambda expression is no longer accepted
when an object implementing such interfaces is required.
Therefore, developers need to switch from lambda expressions
to anonymous classes for better extensibility. Listing 3 shows
an example in project Beam. As shown in the code change,
a new method get() is added to inference MultimapView
and thus it is no longer a functional interface. To this end,
developers replaced the lambda expression with an anonymous
class to make the code syntactic correct. Similarly, 13 such
cases are observed in our dataset.

Type Inference Failure (11/117). We observed 11 cases

1 - HasDisplayData subComponent = builder ->
2 - builder.include("b", builder1 -> builder1.add(...));
3 + HasDisplayData subComponent = new HasDisplayData(){
4 + @Override
5 + public void populateDisplayData(Builder builder){
6 + builder.include("b", new HasDisplayData(){
7 + @Override
8 + public void populateDisplayData(Builder builder){
9 + ...

Listing 4: Replacing Lambda Expressions with Anonymous
Classes (Commit#aedb4c8, Project Beam)

1 @groovy.transform.CompileStatic
2 java.lang.ClassCastException:
3 ThisTest$_m_lambda1 cannot be cast to ThisTest
4 at ThisTest$_m_lambda1$_lambda2.doCall(TS4.groovy:9)
5 at ThisTest$_m_lambda1.doCall(TS4.groovy:11)
6 at ThisTest.m(TS4.groovy:13)
7 at ThisTest$m.call(Unknown Source)

Listing 5: Stack Trace Related to Lambdas in GROOVY-9341

in our dataset where lambda expressions are removed to
resolve type inference failures. As mentioned in Section II,
the type information in a lambda expression can be omitted
and inferred by the compiler. However, there are cases where
there is no sufficient contextual information for the compiler
to infer the type, thus causing a compilation error. Listing 4
shows an example in project Beam where developers replaced
two nested lambda expressions with anonymous classes to “fix
of some call sites where lambdas mess up coder inference”,
as mentioned in the commit message.

Maintenance Issues (6/117). Apart from technical issues,
lambda expressions can also be removed due to human fac-
tors (i.e., causing maintainability issues or inconsistent code
styles). Listing 5 shows a stack trace when debugging a code
snippet with lambda expressions in project Groovy. The names
of the stack frame related to lambda expressions are hard
for developers to recognize, which makes debugging code
related to lambda expressions difficult. Besides, the stack
traces for those lambdas used together with the new Java API 8
methods are even more complex. For instance, as mentioned
by a developer in our user study, “They are often annoying
when debugging step by step inside an IDE compared to
imperative programming. Especially in cases like this: col-
lection.stream().flatMap(...).filter(...).map(...).collect(...).”.

Lazy Evaluation (5/117). One key feature of lambda expres-
sions is that they are not evaluated when they are defined, and
are actually evaluated when they are called instead. Therefore,
lambda expressions are usually used for implementing lazy
evaluation, which is delaying the evaluation of an expression
until its value is needed, thus avoiding needless calculations
and reducing memory footprints. However, some developers
ignored the nature of lazy evaluation and used lambda expres-
sions in the cases where lazy evaluation is not desired, and
thus introduced unexpected behaviors into the program. For
instance, the code change in Listing 6 shows an inappropriate
implementation of lazy evaluation with lambda expressions.
Since Supplier does not have memorization (cache the
result of a function call and return the cached value for the

1 - final Supplier<Blackboard> bb = () -> {
2 - RexNode sourceRef = rexBuilder.makeRangeRef(scan);
3 - return createInsertBlackboard(table, sourceRef,
4 - table.getRowType().getFieldNames());
5 - };
6 + final RexNode sourceRef = rexBuilder.makeRangeRef(scan);
7 + final Blackboard bb = createInsertBlackboard(table,
8 + sourceRef, table.getRowType().getFieldNames());
9 ...

10 - list.add(ief.newColumnDefaultValue(table,
11 - f.getIndex(), bb.get()));
12 + list.add(ief.newColumnDefaultValue(table,
13 + f.getIndex(), bb));

Listing 6: Remove the Lazy Initialization Logic for the Black-
board Instance (Commit#22c76fb, Project Calcite)

following calls to save computation costs), each access to the
generated Blackboard instance needs to call method get()
of Supplier again, thus increasing repeated computations.
Besides, the evaluations of intermediate operations in Stream,
such as map, filter, etc, can also be lazy. Applying these
Stream APIs with lambda expressions performs no operations
until the terminal operation is executed. Consequently, ignor-
ing the lazy nature of intermediate operations in Stream may
also introduce problems (i.e., CASSANDRA-13905 [32]).

Others (9/117). Other issues are too specific to be sum-
marized into a single category. For instance, lambda expres-
sion misuse leads to an ambiguous method call, unhandled
exceptions, and so on. These problems are rare because most
of them can be found at compilation time and easily solved
before commit.

To summarize, we make the following finding with respect
to why developers removed lambdas.

Finding #4: Performance degradation and poor readabil-
ity are the most common reasons why developers remove
lambdas. Lambdas can also be removed due to the nature
of lazy evaluation. Besides, they might cause extensibility
and maintenance issues, thus being removed by developers.

D. Common Migration Patterns

We further identify how developers migrate those inappro-
priate usages of lambda expressions. For the collected 117
cases, we drop those cases whose corresponding commits
are unavailable, and finally obtained 104 unique cases for
further classification. Via investigating the available associated
commits, we observed seven major code migration patterns
(with over five cases for each pattern), which are summarized
in Table II. Be noted that there may be more than one pattern
for each issue. We also analyzed the relationship between
the reasons why lambdas got removed and the corresponding
migration patterns, which is shown in Figure 8. Our major
observations are described as follows:

We observed that the most common migration pattern
(24/104) is to change new Java 8 API methods with lambda
expressions back to conventional methods. According to our
statistical results, 14 of such 24 cases are for performance
improvement. It is because the compiler has well explored
how to optimize old-fashioned code while the support of

0 5 10 15 20 25 30

Performance Degradation
Poor Readability

Serialization Issues
Poor Extensibility

Type Inference Failure
Maintainence Issues

Lazy Evaluation
Other

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5 Pattern 6 Pattern 7

Figure 8: Correlation between Lambda Removal Reasons
and Migration Patterns. The Number Denotes the Migration
Pattern ID as Shown in Table II

performance optimization for new language features such as
Stream API is insufficient. Therefore, when performance is of
significant concern, developers should be careful when using
these new Java 8 API methods with lambda expressions.

We observed that it is also common (22/104) to replace
lambda expressions with method references. Specifically, 17
of them aim to improve readability, which shows that it is a
common strategy to simplify the code with method references.
We have elaborated above that how method references can
make the code more succinct, thus facilitating comprehension.

Besides, in 17 cases, lambda expressions are replaced with
anonymous objects (17/104). Among them, nine are associated
with poor extensibility of lambda expressions. This confirms
the intuition that anonymous objects have better extensibility
compared with lambdas, which is especially important for
interface evolution. Besides, six of the 17 cases are solving
the serialization and type inference problems since anonymous
objects are more friendly to serialization and type inference
compared with lambda expressions.

We do not explain other migration patterns summarized in
Table II in detail, and we summarize our findings as follows.

Finding #5: Lambda expressions that are inappropriately
utilized are often migrated to conventional implementations
using anonymous class, method reference, inner class in-
stance, and so on. Besides, lambdas passed to the new Java
8 API methods are often migrated to conventional ones.

E. Actionable Advice for Using Lambda Expressions

Based on the above findings, together with the responses
from developers in our user study, we are able to make the
following actionable advice for Java developers to better utilize
lambda expressions in the future.

Avoid using lambdas in performance-critical code. Lamb-
das, especially in frequently invoked methods, can deteriorate
the performance of programs, and thus should be refactored
into implementations whose performance has been better op-
timized by the compiler. Specifically, in 29 out of the 117
collected issues, lambda expressions are removed for perfor-
mance optimizations, some of which explicitly mention in their
commit messages that “lambdas are removed for optimization
to reduce object allocations in critical code path”. Meanwhile,
five developers supported this point in their responses. For
instance, as suggested by one developer, “on a JVM with
memory constraints or in a code base where the streams are
going to be instantiated a comparable number of times to other

Table II: Migration Patterns of Removing Lambda Expressions
ID Types Description Frequency
1 Lambda passed to new Java 8 API meth-

ods ⇒ Conventional methods
Replace new Java 8 API, i.e., Collections, Stream and Optionals, with conventional for loop, do
while, enhanced for loops, if else, etc.

24

2 Lambda ⇒ Method reference Lambda expressions are refactored into method reference to improve readability or performance. In some
cases, the lambda body is too large and should be first extracted into another function and then being invoked
with method reference.

22

3 Lambda ⇒ Anonymous class Lambda expressions are refactored into anonymous class. 17
4 Lambda ⇒ Inner class instance The behavior existed in lambda expressions are wrapped into an newly defined inner class. 10
5 Method with lambdas are replaced with a

new method
The method to which the lambda expression is passed, no longer exists and is replaced with a new method
which does not accept lambdas any more.

6

6 Adding a type cast Adding a type to provide more type information for type inference and overload resolution or implementing
Serializable.

6

7 Existing method was changed to accept no
lambdas

Parameters of the existing method are changed to accept no lambdas any more. The corresponding parameters
are either changed to a new one which enclose the behavior of lambda expressions, or deleted (logics in
removed lambdas are implemented in following code).

5

1 - Optional.ofNullable(securityExtension))
2 - .map(Extension::hasAuthenticationMechanisms)
3 - .filter(has -> has.equals(true))
4 - .ifPresent(has -> Config.getFactory().register(...));
5 + if (securityExtension.hasAuthenticationMechanisms()) {
6 + Config.getFactory().register(...);
7 + }

Listing 7: Replacing Lambda in Optionals with if else
(Commit#99d6f10, Project TomEE)

objects one might consider replacing lambdas for normal for
loops to avoid using extra memory resources”.

Avoid using lambdas with new Java 8 API methods in
branch logic processing. New Java 8 API methods with lamb-
das are unfriendly for branch logic processing. Two lambda
removals that refactor new Java 8 API methods are caused by
such a reason. Listing 7 displays an example, which shows
the comparison between the implementation with Optionals
and if else. The former is quite complex and can be easily
refactored to the latter one. Besides, one developer in the user
study also pointed out that: “branch logic processing is hard
to accomplish with existing stream processing mechanisms in
Java. The degree of awkwardness to implement certain logic
for me is a criteria for using lambda expressions.”

Specify the type information in generic settings or over-
loaded methods. Since problems are common for lambda
expressions in overload resolution and type inference, it is
better to explicitly specify the type information when using
lambdas. Otherwise, it is preferable to use an anonymous
object instead. This has been supported by ten issues and
three developers in our study. One developer responded that
“lambda methods do not provide enough information for
automatic type extraction when Java generics are involved.
An easy workaround is to use an (anonymous) class instead.
Otherwise, the type has to be specified explicitly using type
information ”

Avoid lambdas if you want to throw a checked exception.
Throwing a checked exception in the lambda body is quite
tricky, which should be avoided. This has been supported
by two issues in our study and three developers in the user
study. Throwing a checked exception in lambda bodies is
implemented by either declaring it in the functional interface to
throw this exception, or wrapping the checked exception inside
a RuntimeException, and then throw the wrapped unchecked

1 public void removeHivePluginFrom(Iterable<Drillbit>
2 drillbits) throws PluginException {
3 try {
4 drillbits.forEach(bit -> {
5 try {
6 bit.getContext().getStorage().remove(pluginName);
7 } catch (PluginException e) {
8 throw new RuntimeException("...", e);
9 }

10 });
11 } catch (RuntimeException e) {
12 throw (PluginException) e.getCause();
13 }
14 }

Listing 8: Throwing a Checked exception with a Wrapper

1 public void removeHivePluginFrom(Iterable<Drillbit>
2 drillbits) throws PluginException {
3 for (Drillbit drillbit : drillbits) {
4 drillbit.getContext().getStorage().remove(name);
5 }
6 }

Listing 9: Throwing a Checked Exception with For Loop

exception instead. However, it is sometimes inconvenient to
modify functional interfaces (i.e., built-in functional interface).
Using wrappers will perplex the programs, which contradicts
the intention of using lambda expressions to simplify code.
Therefore, developers are prone to remove lambda expressions
for such cases. Listing 8 shows an example as mentioned by
one developer from the project Apache Drill [33]. Specifi-
cally, the remove() method may throw a checked exception:
PluginException. The implementation with enhanced for
loop in Listing 9 is quite simple compared with that using a
wrapper with lambdas as shown in Listing 8.

Avoid constructing large lambdas. For a lambda which is
too large or encapsulates too much logic, it is better to be
refactored to facilitate code comprehension. This has been sug-
gested by six developers in the responses towards the scenarios
they would avoid using lambda expressions. As mentioned by
one developer, “a lambda expression encapsulates too much
logic, and it would be easier to follow the code if broken out
into a named function, or refactored some other way.”

V. THREATS TO VALIDITY

This study can suffer from the following threats to validity.
First, our collected dataset might contain noise and may not

be generalizable enough. In our dataset, there can be a lambda

expression that is not removed for fixing an issue because it
is challenging to accurately infer the semantics of all code
changes in large-scale projects. To mitigate this threat, we tried
our best to set several rigorous rules to reduce the potential
noises in our dataset. Besides, our empirical findings might not
be generalizable to other non-ASF projects since we mainly
collected the removed and kept lambda expressions from the
ASF open-source projects. To reduce such a threat, we se-
lected 103 large-scale open-source Java projects from different
categories including big data, cloud computing, databases,
mobile application, network client/server, and etc. to ensure
our dataset is diverse and representative enough.

Second, the issues collected for exploring the concerns and
actions of developers may not cover all aspects. To tackle
this problem, we collected our dataset from multiple sources,
including Apache JIRA, GitHub Issues, and code commits.
Furthermore, we also referred to the mailing lists of our
subjects and communicated with the developers who removed
lambdas for further information. Collecting data from various
sources can help enrich the generality of our dataset.

Third, our study mainly focuses on lambda removals, which
may miss issues caused by lambda modifications. We chose
those removed lambdas since they are more likely to cause
side effects. On the contrary, lambda modifications are mostly
associated with functionality improvement or project main-
tenance, which may introduce potential noises if we consider
such cases. However, important issues that are worth exploring
can also be caused by lambda modifications, and thus, in the
future, we will try to devise more sophisticated methods to
collect such data for further studies.

Forth, the side effects summarized in our findings are not
only caused by the lambda expressions themselves, but also
can be collectively caused by the lambdas and the surrounding
contexts, such as the Stream APIs, to which the lambdas are
passed as parameters. Since the common usages of lambdas
are frequently mixed with these APIs, we take such cases into
consideration to enrich our scope as explained in Section II-B.
To avoid misunderstanding by readers, we differentiate the
syntactic constructs of lambda expressions and the APIs that
rely on them while clarifying our findings.

VI. DISCUSSION AND FUTURE WORK

Lambda Removal Recommender. We have explored a
set of static features for lambdas (see Section III-C) and
summarized several inappropriate ways of lambda usages
along with common migration patterns (see Section IV-C),
which are helpful for constructing automated tools to detect
certain lambda misuses and recommend a more appropriate
implementation instead. For instance, the tool can recom-
mend migrating lambda expressions into method references
for readability enhancement if these lambdas are too complex
(as measured by the features we extracted in the qualitative
study). Besides, we also found that lambda expressions have
a higher probability to cause type inference failures when
the corresponding functional interfaces are generic. Therefore,
the tool can recommend specifying the generic type for such

cases. In the future, we will explore the above ideas and build
automated tools to facilitate appropriate lambda usages.

Study on more Java Functional Idioms. Along with
lambda expressions, some other functional idioms [8] (i.e.,
Collections, Stream, and Optionals) are also introduced
in Java 8 to facilitate functional programming in Java. In this
study, we inspected two side-effects of these functional idioms:
poor performance, and unfriendly to branch logic processing.
Further efforts will be made to comprehensively understand
the advantages and disadvantages of applying these functional
idioms, thus providing more reliable and useful guidance on
functional programming with Java.

Applicability to other Programming Languages. Lambda
expressions are also supported by other Object-Oriented lan-
guages, such as C++, Python, etc. Some side effects that
we observed in Java lambda expressions also exist in other
programming languages. For instance, usages of lambdas
in Python can also lead to poor readability when lambda
expressions are too long [34] or do not have names for
developers to understand their functionalities [35]. Therefore,
some of our findings are also applicable to other Object-
Oriented languages. It is certain that the characteristics of
lambda expressions might be diverse in different languages,
while the methodology of our studies including both the
quantitative analysis and qualitative analysis can be similarly
adapted to investigate other languages. It is also worth study-
ing how functional programming paradigms impact Object-
Oriented Programming and the differences among different
OOP languages. However, following existing studies [2], [8],
[9], [11], we put our focus mainly on the Java language in
this study, and left the studies across different languages as
our important future works.

VII. CONCLUSION

Based on our observation that lambda expressions can often
incur side effects or even severe bugs, we are motivated, in
this study, to understand inappropriate usages of lambda ex-
pressions in Java. Specifically, we performed a quantitative and
a qualitative study in open-source Java projects to investigate
the characteristics of removed lambda expressions as well as
the concerns of developers when removing them. Specifically,
we explore four code-level characteristics of lambdas that
are removed by developers, which provide useful information
on the behind reasons. On the other hand, we summarized
seven major reasons for the removal of lambda expressions
along with the associated migration patterns. Based on all our
findings, we finally come up with five pieces of actionable
advice to help developers free from the side effects of lambda
expressions as much as possible.

ACKNOWLEDGMENT

We sincerely thank all anonymous reviewers for their valu-
able comments. This work was supported by the National Nat-
ural Science Foundation of China (Grant No. 62002125 and
No. 61802164) as well as the Fundamental Research Funds
for the Central Universities (HUST) No.2020kfyXJJS076.

REFERENCES

[1] M. Vanags and R. Cevere, “The perfect lambda syntax,” Baltic Journal
of Modern Computing, vol. 6, no. 1, pp. 13–30, 2018. [Online].
Available: https://doi.org/10.22364/bjmc.2018.6.1.02

[2] D. Mazinanian, A. Ketkar, N. Tsantalis, and D. Dig, “Understanding
the use of lambda expressions in java,” Proceedings of the ACM
on Programming Languages, vol. 1, no. OOPSLA, pp. 1–31, 2017.
[Online]. Available: https://doi.org/10.1145/3133909

[3] “Lucene-9478,” 2021, accessed: 2021-4-12. [Online]. Available:
https://issues.apache.org/jira/browse/LUCENE-9478

[4] “Apache camel,” 2021, accessed: 2021-4-12. [Online]. Available:
https://camel.apache.org/

[5] “Apache geode,” 2021, accessed: 2021-4-12. [Online]. Available:
https://geode.apache.org/

[6] “Apache calcite,” 2021, accessed: 2021-4-12. [Online]. Available:
https://github.com/apache/calcite

[7] “Stream,” 2021, accessed: 2021-4-12. [Online]. Available: https:
//docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html

[8] H. Tanaka, S. Matsumoto, and S. Kusumoto, “A study on the current
status of functional idioms in java,” IEICE Transactions on Information
and Systems, vol. 102, no. 12, pp. 2414–2422, 2019. [Online].
Available: https://doi.org/10.1587/transinf.2019MPP0002

[9] W. Lucas, R. Bonifácio, E. D. Canedo, D. Marcı́lio, and F. Lima, “Does
the introduction of lambda expressions improve the comprehension of
java programs?” in Proceedings of the XXXIII Brazilian Symposium
on Software Engineering, 2019, pp. 187–196. [Online]. Available:
https://doi.org/10.1145/3350768.3350791

[10] A. Gyori, L. Franklin, D. Dig, and J. Lahoda, “Crossing the gap
from imperative to functional programming through refactoring,”
in Proceedings of the 2013 9th Joint Meeting on Foundations
of Software Engineering, 2013, pp. 543–553. [Online]. Available:
https://doi.org/10.1145/2491411.2491461

[11] A. Alqaimi, P. Thongtanunam, and C. Treude, “Automatically
generating documentation for lambda expressions in java,” in
2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR). IEEE, 2019, pp. 310–320. [Online]. Available:
https://doi.org/10.1109/MSR.2019.00057

[12] N. Tsantalis, D. Mazinanian, and S. Rostami, “Clone refactoring with
lambda expressions,” in 2017 IEEE/ACM 39th International Conference
on Software Engineering (ICSE). IEEE, 2017, pp. 60–70. [Online].
Available: https://doi.org/10.1109/ICSE.2017.14

[13] “Myfaces-4337,” 2021, accessed: 2021-7-20. [Online]. Available:
https://issues.apache.org/jira/browse/MYFACES-4337

[14] “Flink-18075,” 2021, accessed: 2021-4-20. [Online]. Available: https:
//issues.apache.org/jira/browse/FLINK-18075

[15] “Flink-20147,” 2021, accessed: 2021-4-20. [Online]. Available: https:
//issues.apache.org/jira/browse/FLINK-20147

[16] “Asf project list,” 2021, accessed: 2021-4-12. [Online]. Available:
https://projects.apache.org/projects.html?number

[17] J. Falleri, F. Morandat, X. Blanc, M. Martinez, and M. Monperrus,
“Fine-grained and accurate source code differencing,” in ACM/IEEE
International Conference on Automated Software Engineering, ASE
’14, Vasteras, Sweden - September 15 - 19, 2014, 2014, pp. 313–324.
[Online]. Available: http://doi.acm.org/10.1145/2642937.2642982

[18] “Hunks,” 2021, accessed: 2021-4-12. [Online]. Available: http:
//www.gnu.org/software/diffutils/manual/html node/Hunks.html

[19] K. Herzig and A. Zeller, “The impact of tangled code changes,”
in 2013 10th Working Conference on Mining Software Repositories
(MSR). IEEE, 2013, pp. 121–130. [Online]. Available: https:
//doi.org/10.1109/MSR.2013.6624018

[20] S. Kim and E. J. Whitehead Jr, “How long did it take to
fix bugs?” in Proceedings of the 2006 international workshop on
Mining software repositories, 2006, pp. 173–174. [Online]. Available:
https://doi.org/10.1145/1137983.1138027

[21] Y. Wang, M. Wen, Z. Liu, R. Wu, R. Wang, B. Yang, H. Yu,
Z. Zhu, and S.-C. Cheung, “Do the dependency conflicts in my
project matter?” in Proceedings of the 2018 26th ACM joint meeting
on european software engineering conference and symposium on the
foundations of software engineering, 2018, pp. 319–330. [Online].
Available: https://doi.org/10.1145/3236024.3236056

[22] K. Pearson, “X. on the criterion that a given system of deviations from
the probable in the case of a correlated system of variables is such that it
can be reasonably supposed to have arisen from random sampling,” The
London, Edinburgh, and Dublin Philosophical Magazine and Journal of
Science, vol. 50, no. 302, pp. 157–175, 1900.

[23] H. B. Mann and D. R. Whitney, “On a test of whether one of two
random variables is stochastically larger than the other,” The annals of
mathematical statistics, pp. 50–60, 1947.

[24] “State of the lambda,” 2021, accessed: 2021-4-12. [Online]. Available:
https://cr.openjdk.java.net/∼briangoetz/lambda/lambda-state-final.html

[25] “Is it worth to use if-else statement as java
optional pattern?” 2021, accessed: 2021-7-20. [Online].
Available: https://codereview.stackexchange.com/questions/223277/is-
it-worth-to-use-if-else-statement-as-java-optional-pattern

[26] J. W. Creswell and C. N. Poth, Qualitative inquiry and research design:
Choosing among five approaches. Sage publications, 2016.

[27] “Pr 476, project solr,” 2021, accessed: 2021-7-20. [Online]. Available:
https://github.com/apache/lucene-solr/pull/476/files

[28] “Commit f555aa6, project presto,” 2021, accessed: 2021-7-20. [Online].
Available: https://github.com/prestodb/presto/commit/f555aa69

[29] “How and why to serialize lambdas?” 2021, accessed: 2021-7-
20. [Online]. Available: https://dzone.com/articles/how-and-why-to-
serialialize-lambdas

[30] “The java® language specification,” 2015, accessed: 2020-10-28.
[Online]. Available: https://docs.oracle.com/javase/specs/jls/se8/html/
index.html

[31] “Tinkerpop-1230,” 2021, accessed: 2021-7-20. [Online]. Available:
https://issues.apache.org/jira/browse/TINKERPOP-1230

[32] “Cassandra-13905,” 2021, accessed: 2021-7-20. [Online]. Available:
https://issues.apache.org/jira/browse/CASSANDRA-13905

[33] “Apache drill,” 2021, accessed: 2021-4-12. [Online]. Available:
https://github.com/apache/drill

[34] “lambda function in different lines,” 2021, accessed: 2021-7-
20. [Online]. Available: https://stackoverflow.com/questions/57969592/
lambda-function-in-different-lines

[35] “Which is more preferable to use: lambda functions or
nested functions (’def’)?” 2021, accessed: 2021-7-20. [Online].
Available: https://stackoverflow.com/questions/134626/which-is-more-
preferable-to-use-lambda-functions-or-nested-functions-def

https://doi.org/10.22364/bjmc.2018.6.1.02
https://doi.org/10.1145/3133909
https://issues.apache.org/jira/browse/LUCENE-9478
https://camel.apache.org/
https://geode.apache.org/
https://github.com/apache/calcite
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://docs.oracle.com/javase/8/docs/api/java/util/stream/Stream.html
https://doi.org/10.1587/transinf.2019MPP0002
https://doi.org/10.1145/3350768.3350791
https://doi.org/10.1145/2491411.2491461
https://doi.org/10.1109/MSR.2019.00057
https://doi.org/10.1109/ICSE.2017.14
https://issues.apache.org/jira/browse/MYFACES-4337
https://issues.apache.org/jira/browse/FLINK-18075
https://issues.apache.org/jira/browse/FLINK-18075
https://issues.apache.org/jira/browse/FLINK-20147
https://issues.apache.org/jira/browse/FLINK-20147
https://projects.apache.org/projects.html?number
http://doi.acm.org/10.1145/2642937.2642982
http://www.gnu.org/software/diffutils/manual/html_node/Hunks.html
http://www.gnu.org/software/diffutils/manual/html_node/Hunks.html
https://doi.org/10.1109/MSR.2013.6624018
https://doi.org/10.1109/MSR.2013.6624018
https://doi.org/10.1145/1137983.1138027
https://doi.org/10.1145/3236024.3236056
https://cr.openjdk.java.net/~briangoetz/lambda/lambda-state-final.html
https://codereview.stackexchange.com/questions/223277/is-it-worth-to-use-if-else-statement-as-java-optional-pattern
https://codereview.stackexchange.com/questions/223277/is-it-worth-to-use-if-else-statement-as-java-optional-pattern
https://github.com/apache/lucene-solr/pull/476/files
https://github.com/prestodb/presto/commit/f555aa69
https://dzone.com/articles/how-and-why-to-serialialize-lambdas
https://dzone.com/articles/how-and-why-to-serialialize-lambdas
https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://issues.apache.org/jira/browse/TINKERPOP-1230
https://issues.apache.org/jira/browse/CASSANDRA-13905
https://github.com/apache/drill
https://stackoverflow.com/questions/57969592/lambda-function-in-different-lines
https://stackoverflow.com/questions/57969592/lambda-function-in-different-lines
https://stackoverflow.com/questions/134626/which-is-more-preferable-to-use-lambda-functions-or-nested-functions-def
https://stackoverflow.com/questions/134626/which-is-more-preferable-to-use-lambda-functions-or-nested-functions-def

	Introduction
	Background and Motivation
	Lambda Expressions
	Misuse of Lambda Expressions

	Characterizing the Removed Lambdas
	Data Collection
	Project Selection
	Collecting Removed Lambda Expressions
	Collecting Kept Lambda Expressions

	Methodology
	Empirical Results
	Lifetime of removed lambdas
	The usage of functional interface
	The complexity of lambda expressions
	The contexts of lambda expressions

	Concerns and Actions of Developers
	Data Collection
	Analysis Approach
	Reasons for Misusing Lambda Expressions
	Common Migration Patterns
	Actionable Advice for Using Lambda Expressions

	Threats to Validity
	Discussion and Future Work
	Conclusion
	References

