
Why Do Developers Remove
LAMBDA EXPRESSIONS in Java?

MINGWEI ZHENG, Jun Yang , Ming Wen, Hengcheng Zhu , Yepang Liu , Hai Jin

zmw12306@gmail.com

Huazhong University of
Science and Technology

Southern University of
Science and Technology

The Hong Kong University of
Science and Technology

ASE 2021

mailto:zmw12306@gmail.com

Java Lambda Expressions

• Lambda Expression:
parameter list the arrow token (→) lambda body.

• Functional Interface:
an interface that has just one abstract method. (aside from the methods of Object)

Related Work

• Mazinanian et al. “Understanding the use of lambda expressions in Java”.
[OOPSLA 2017]

• Matsumoto et al. “A study on the current status of functional idioms in Java”.
[IEICE Transactions on Information and Systems 2019]

• Lucas et al. “Does the introduction of lambda expressions improve the
comprehension of java programs?”. [SBES 2019]

• …

Thus far, all research works focus on the usages of Java lambda
expressions, how about the misuse of lambda expressions in Java?

Misuse of Lambda Expressions

Trend of lambda removals

significance pervasiveness

Misuse: a lambda expression is used inappropriately which causes
side effects or even induces bugs.

500 bytes of memory leakage on
each full flush (LUCENE-9478)

!"#$%&'#()*+,-'$./*#0!1&(0*&-*2*0*3.*.*
4+54#$*3.*.*6(#0,/478./9*#+(#:;<!=,>
&*0.&#,#*?,-'$./*#0!1&(0*&-*2*0*3.*.*6(#@'A0&*4/B

:*#*&40('#,C,DB,!*E8',C,DB,6=,FG,#*70A*E8'H:*06=,F
D=I
J

What We Explored?

RQ1: What lambda expressions are more frequently
removed by developers?

RQ2: Why do developers remove lambda expressions in
practice? What are the reasons behind and impacts?

RQ3: What are the migration patterns of the inappropriate
usages of lambda expressions?

Our Empirical Study

Quantitative study Qualitative study

• Collected 3,662 removed lambdas
and 31,288 kept ones

• Understand the characteristics of
removed lambda expressions

• Collected 117 real-world issues and
conducted a user study

• Explored reasons, impacts, and
migration patterns of lambda
removalsWe are the first to

comprehensively study the

inappropriate usages of Java

lambda expressions !!!

What Did We Explore?

RQ1: What lambda expressions are more frequently
removed by developers?

Quantitative Study: characterizing the removed lambdas

• 103 actively maintained Java
projects

• at least 1,000 commits and 10
committers

• 3,662 removed lambdas:
rigorous rules to

corresponding commits and
edit hunks

• 31,228 kept lambdas:
exist in the latest code

repository for more than 24
monthsD

at
a

C
o

lle
ct

io
n

Collecting Removed and
Kept Lambda ExpressionsProject Selection

Lifetime of removed lambdas The usages of functional interfaces

The complexity of lambdas The contexts of lambdas

The time period the
lambda expression has
stayed in the project.

Compare Removed Lambdas and Kept Lambdas

Built-in functional interfaces

Customized functional interfaces

Parameter number Lines of code

Lambda body length Variable number

method APIs: built-in APIs
or self-defined APIs?

Characteristics from 4 Perspectives

• Lifetime of removed lambdas • The usage of functional interface

no longer than one month

more than one year

Lambda expressions built on top of
customized functional interfaces are
more likely to be removed.

Characteristics from 4 Perspectives

• The complexity of lambda expressions

a. Parameter number b. Lines of code

c. Lambda body length d. Variable number
With parameters Without parameters

Without parameters

Characteristics from 4 Perspectives

• The contexts of lambda expressions

Lambda expressions that are
built on top of customized
functional interfaces, passed to
self-defined method invocations
are more likely to be removed.

What Did We Explore?

RQ2: Why do developers remove lambda expressions in
practice? What are the reasons behind and impacts?

RQ3: What are the migration patterns of the inappropriate
usages of lambda expressions?

Qualitative Study: concerns and actions of developers

USER STUDY

Data Collection

117 issues

Manual Analysis

RQ2:
Remove reasons

RQ3:
Migration Patterns

Code Diff

Issue Descriptions

Email Replies

Reasons of Removing Lambda Expressions

7 major reasons for removal

Reason 1: Performance Degradation (29/117)

• excessive object allocations, significant garbage collection

• memory leaks

• excessive CPU cycles, non-trivial memory allocation overhead

…

Commit f555aa6, project presto

Reason 2: Poor Readability (28/117)

• long body or complex logic, anonymous

Commit#9e9517d, Project Dubbo

A developer in project Apache Calcite, “I generally dislike long lambdas due to bad
readability.”

Reason 7: Lazy Evaluation (5/117)

• delay the evaluation of an expression until its value is needed

Commit#22c76fb, Project Calcite

Common Migration Patterns

• 7 major migration patterns

Correlation between Lambda Removal Reasons and
Migration Patterns

Most Common(24/104): Lambda passed to new Java 8 API methods ⇒ Conventional methods

~ performance improvement

(22/104): Lambda ⇒ Method reference

~ improve readability

Actionable Advice for Using Lambda Expressions

• Avoid using lambdas in performance-critical code.

• Avoid using lambdas with new Java 8 API methods in branch logic processing.
Commit#99d6f10,
Project TomEE

Sometimes much more complex!!!

Performance degradation!!!

“branch logic processing is hard to accomplish with existing stream processing mechanisms in Java. The
degree of awkwardness to implement certain logic for me is a criteria for using lambda expressions”-----
---from a developer’s reply

“on a JVM with memory constraints or in a code base where the streams are going to be
instantiated a comparable number of times to other objects one might consider replacing
lambdas for normal for loops to avoid using extra memory resources”--------from a
developer’s reply

Actionable Advice for Using Lambda Expressions

• Specify the type information in generic.

• Avoid lambdas if you want to throw a checked exception.

Throwing a checked exception in the lambda body is quite tricky!!!

• Avoid constructing large lambdas.
Bad readability!!!

Lambdas do not provide enough type information!!!

“lambda methods do not provide enough information for automatic type extraction when Java generics are
involved. An easy workaround is to use an (anonymous) class instead. Otherwise, the type has to be
specified explicitly using type Information. ”--------from a developer’s reply

“a lambda expression encapsulates too much logic, and it would be easier to follow the code if broken out
into a named function, or refactored some other way”--------from a developer’s reply

Discussion and Future Work

• Lambda Removal Recommender.

- detect certain lambda misuses and recommend a more appropriate implementation

• Study on more Java Functional Idioms.

- other functional idioms (i.e.,Collections, Stream, and Optionals)

• Applicability to other Programming Languages.

- other Object-Oriented languages, such as C++, Python, etc.

Conclusion

• A quantitative and a qualitative study on the inappropriate usages of Java lambda
expressions

• Explored 4 code-level characteristics of removed lambdas

• Summarized 7 major reasons for lambda removals and 7 major migration patterns

• 5 pieces of actionable advice

• Dataset available at: https://github.com/CGCL-codes/LambdaMisuse

https://github.com/CGCL-codes/LambdaMisuse

Thanks!

Huazhong University of
Science and Technology

Southern University of
Science and Technology

The Hong Kong University of
Science and Technology

QA

ASE 2021

