ASE 2021 ‘wl

wWh Y Do Developers Remove
LAMBDA EXPRESSIONS i javaz

MINGWEI ZHENG, Jun Yang . Ming Wen, Hengcheng Zhu , Yepang Liu , Hai Jin
zmw12306@gmail.com

? SUSTech w

Southern University of The Hong Kong University of
Science and Technology Science and Technology

Huazhong University of
Science and Technology

mailto:zmw12306@gmail.com

Java Lambda Expressions

Parameter List :

! \\\\\, . @FunctionalInterface

N> (int x) -> { | public interface IntOp {
t return xx2; | dint apply(int value);

Lambda Body — } -}

« Lambda Expression:
parameter list + the arrow token (—) + lambda body.

 Functional Interface:
an interface that has just one abstract method. (aside from the methods of Object)

Related Work

* Mazinanian et al. “Understanding the use of lambda expressions in Java”.
[OOPSLA 2017]

Thus far, all research works focus on the usages of Java lambda

expressions, how about the misuse of lambda expressions in Java?

Misuse of Lambda Expressions

Misuse: a lambda expression is used inappropriately which causes
side effects or even induces bugs.

significance pervasiveness
synchronized T
int £ 4000
3 3000 ’
return new , >
1 1 g 2000
_ ’ ’ 2 1000 i
1); 5 = ||

2013 2014 2015 2016 2017 2018 2019 2020 2021

500 bytes of memory leakage on

each full flush (LUCENE-9478) Trend of lambda removals

What We Explored?

RQ1: What lambda expressions are more frequently
removed by developers?

RQ2: Why do developers remove lambda expressions in
practice? What are the reasons behind and impacts?

\ RQ3: What are the migration patterns of the inappropriate
\ usages of lambda expressions?

Our Empirical Study

Collected 3,662 removed lambdas « Collected 117 real-world issues and
and 31,288 kept ones conducted a user study

Understand the characteristics of « Explored reasons, impacts, and
removed lambda expressions migration patterns of lambda

removals

What Did We Explore?

RQ1: What lambda expressions are more frequently
removed by developers?

T S GCEC

[oee
s —

GumTree

APACHE

!
|
SOFTWARE FOUNDATION I
!
|

999999999999999

=) + 3,662 removed lambdas: \\

\ rigorous rules to \
\ corresponding commits and

\\ edit hunks \

/‘ * 31,228 kept lambdas:

p exist in the latest code
y repository for more than 24
months

* 103 actively maintained Java b N
projects A

* at least 1,000 commits and 10
committers

Collecting Removed and
Kept Lambda Expressions

Project Selection

Compare Removed Lambdas and Kept Lambdas

lambda expression has
stayed in the project.

: -
|
| The time period the I |
| 1 VS
| | |

The complexity of lambdas

Lambda body length Variable number

Built-in functional interfaces

Customized functional interfaces

method APIs: built-in APIs
or self-defined APIs?

Characteristics from 4 Perspectives

=) - Lifetime of removed lambdas

40-

20-
@
0-

Képt Removed

Number

38 267 no longer than one month
° ©

20 23% more than one year
®

=) « The usage of functional interface

Built-In
Functional
Interface?

Kept 71.97% 28.03%
Removed 64.32% 35.68%
0% 20% 40% 60% 80% 100%

mYes [INo

Lambda expressions built on top of

customized functional interfaces are
more likely to be removed.

Characteristics from 4 Perspectives

 The complexity of lambda expressions

= a. Parameter number

Removed
2000

1500

1000
500
‘ ._____

4 S5 >=5

c. Lefbda body length

Removed

' out paramet

20000

15000

10000

5000

0

Kept

4 5 >=5

b7 Lines of code

Characteristics from 4 Perspectives

« The contexts of lambda expressions

Kept 49.68% 50.32%

Removed 32.62% 67.38%

JDK API?

Table I: APIs that Lambda Expressions Are Passed To

APl Removed Kept Difference Lambda expressions that are
Iterable.forEach 13.78% 12.65% 1.13% built on top of customized
Stream.map 8.49% 13.93% f . ¥ f d
Map.computeIfAbsent 7.69% 4.57% 3.12% unctional interfaces, passed to
Optional.ifPresent ;’-gg: i-gzz 3-33% o self-defined method invocations
Stream.forEach ; . .33% .

Bhidi e 5.29% 14.20% are more likely to be removed.
Collectors.toMap 4.49% 4.70% -0.21%

Map.forEach 4.01% 3.50% 0.51%

ExecutorService.submit 3.69% 2.59% 1.10%

Optional.map 3.53% 1.51% 2.02%

IntStream.forEach 2.40% 1.48% 0.92%

What Did We Explore?

RQ2: Why do developers remove lambda expressions in
practice? What are the reasons behind and impacts?

\ RQ3: What are the migration patterns of the inappropriate
\ usages of lambda expressions?

Qualitative Study: concerns and actions of developers

frioncie 25 \ [N
- =—=| Tssue Descriptions RQ2:
_ GitH“b 6) / @ Email Replies ‘ Remove reasons
fipuserstoy D5 e N
) Code Diry ‘ /\ Migration Patterns
_ 117 issues _ Y,

Reasons of Removing Lambda Expressions

erformance Degradation \EEE |
Poor Readabili
fatization fssues
Poor Extensibility FET]
Type Inference Failure R |
Maintenance Issues S |
Lazy Evaluation >
Other T |

0 5 10 15 20 25 30

-

M Real Issues [Developer Response

7 major reasons for removal
[=

35

226
227
228
229
230

Reason 1: Performance Degradation (29/117) @

« excessive object allocations, significant garbage collection

« memory leaks
private static <T> Stream<T> cyclingShuffledStream(Collection<T> collection)

223
224
225
226
227

+ + 4+ + +

i

List<T> list = new ArraylList<>(collection);
Collections.shuffle(list);
return Stream.generate(() -> list).flatMap(List::stream);
ImmutablelList.Builder<InternalNode> distribution = Immutablelist.builderWithExpectedSize(bucketCount);
for (int i = @; i < bucketCount; i++) {
distribution.add(shuffledNodes.get(i % shuffledNodes.size()));
}

return distribution.build();

Commit f555aa6, project presto

Reason 2: Poor Readability (28/117)

* long body or complex logic, anonymous

E .collect(Coll

(UrlUtils.isConfigurator(url))

return CONFIGURATORS_CATEGORY;

} else if (UrlUtils.isRoute(url)) {
return ROUTERS_CATEGORY;

} else if (UrlUtils.isProvider(url)) {
return PROVIDERS_CATEGORY;

private String judgeCategory(URL url) {
if (UrlUtils.isConfigurator(url)) {
return CONFIGURATORS_CATEGORY;
} else if (UrlUtils.isRoute(url)) {
return ROUTERS_CATEGORY;
} else if (UrlUtils.isProvider(url)) {
return PROVIDERS_CATEGORY;

return "";

= s

+ .collect(Collectors.groupingsziEEEZZjudgeCatééEEgzID

Commit#9e9517d, Project Dubbo

+ + + + + 4+ + + + +

A developer in project Apache Calcite, “I generally dislike long lambdas due to bad

¥ msaAAhl "

Reason 7: Lazy Evaluation (6/117)

» delay the evaluation of an expression until its value is needed

- // Lazily create a blackboard that contains all non-generated columns.

- finak:EEEEEE%P<BlackboEEEE:EE)= () ->H{

- RexNode sourceRef = rexBuilder.makeRangeReference(scan);

- return createlnsertBlackboard(table, sourceRef,

. table.getRowType().getFieldNames());

: }s

- final RexNode sourceRef = rexBuilder.makeRangeReference(scan);

+ final Blackboard bb = createlnsertBlackboard(table, sourceRef,

- table.getRowType().getFieldNames());

- list.add(ief.newColumnDefaultValue(table, f.getIndex() ,
+ list.add(ief.newColumnDefaultValue(table, f.getIndex(), bb));

Commit#22c76fb, Project Calcite

Common Migration Patterns

« 7 major migration patterns

Table II: Migration Patterns of Removing Lambda Expressions

ID | Types Description Frequency
Lambda passed to new Java 8 API meth- Replace new Java 8 API, i.e., Collections, Stream and Optionals, with conventional for loop, do 24
ods = Conventional methods while, enhanced for loops, if else, efc.

‘ Lambda => Method reference Lambda expressions are refactored into method reference to improve readability or performance. In some 22
cases, the lambda body is too large and should be first extracted into another function and then being invoked
with method reference.

; Lambda = Anonymous class Lambda expressions are refactored into anonymous class. 17

4 Lambda = Inner class instance The behavior existed in lambda expressions are wrapped into an newly defined inner class. 10

5 Method with lambdas are replaced with a The method to which the lambda expression is passed, no longer exists and is replaced with a new method 6
new method which does not accept lambdas any more.

6 Adding a type cast Adding a type to provide more type information for type inference and overload resolution or implementing 6

Serializable.
7 Existing method was changed to accept no Parameters of the existing method are changed to accept no lambdas any more. The corresponding parameters 5

lambdas

are either changed to a new one which enclose the behavior of lambda expressions, or deleted (logics in
removed lambdas are implemented in following code).

Correlation between Lambda Removal Reasons and
Migration Patterns

Other |
Lazy Evaluation = ¥/

Maintainence Issues | |G/ |

Type Inference Failure

Poor Extensibility T |

Serialization Issues I 1
Poor Readability [A
Performance Degradation [
0 o t 10 35 20 25 30

Most Gommon (21,/101,): szfﬁdg}pdsaﬂd)da reWldha® rdfRirereiiods = Conventional methods

Actionable Advice for Using Lambda Expressions

+ 4+ 4+ + + + + + o+

Avoid using lambdas in performance-critical code.

Porfarmnanre Aonradatianlll

Optional.ofNullable(CDI.current().getBeanManager().getExtension(TomEESecurityExtension.class))
.map (TomEESecurityExtension: :hasAuthenticationMechanisms)
.filter(has -> has.equals(true))
.ifPresent(has -> AuthConfigFactory.getFactory()
.registerConfigProvider(new TomEESecurityAuthConfigProvider(),
null, null,
"TomEE Security JSR-375"));
final TomEESecurityExtension securityExtension =

CDI.current().getBeanManager().getExtension(TomEESecurityExtension.class);

if (securityExtension.hasAuthenticationMechanisms()) {
AuthConfigFactory.getFactory()

.registerConfigProvider(new TomEESecurityAuthConfigProvider(),

"http", ctx.getVirtualServerName() + " " + ctx.getContextPath(),

"TomEE Security JSR-375");

ng.
it#99d6f10,
A orREE

4

Actionable Advice for Using Lambda Expressions

public void removeHivePluginFrom(Iterable<Drillbit>

1
. Specify the ty} - drillbits) throws PluginException {
3 try |
Lambdas do nc drillbits.forEach(bit -> ({
5 try {
" 6 bit.getContext () .getS ra () .remove (pluginName) ;
’kwnbah/nefhoae7 } catch (PluginException e) {
/nvolved. An easy 8 throw new RuntimeException("...", e);
}

e e . . 9
specified explici: | .
11 } catch (RuntimeException e) {

. 12 throw (PluginException) e.getCau ();
« Avoid lambdas,; |

Throwing a che”
Listing 8: Throwing a Checked exception with a Wrapper

* Avoid constru
Bad readability

public void removeHivePluginFrom(Iterable<Drillbit
drillbits) throws PluginException ({
for (Drillbit drillbit : drillbits) {
drillbit.getContext () .getStorage () .rel (name) ;

}

L I S B

‘a lambda expres

6 }

into a hamed fun
Listing 9: Throwing a Checked Exception with For Loop

n when Java generics are
he type has to be

/

' the code ¥ broken out
s reply

Discussion and Future Work

=) - Lambda Removal Recommender.
- detect certain lambda misuses and recommend a more appropriate implementation

) ° Study on more Java Functional Idioms. -—'®
- other functional idioms (i.e.,Collections, Stream, and Optionals) - i

=) - Applicability to other Programming Languages. 0
- other Object-Oriented languages, such as C++, Python, etc. g

Conclusion

=) - A quantitative and a qualitative study on the inappropriate usages of Java lambda
expressions

=) . Explored 4 code-level characteristics of removed lambdas
=) + Summarized 7 major reasons for lambda removals and 7 major migration patterns
= * 5 pieces of actionable advice

 Dataset available at: https://github.com/CGCL-codes/LambdaMisuse

https://github.com/CGCL-codes/LambdaMisuse

ASE 2021

hanks/!

? SUSTech w

Huazhong University of Southern University of The Hong Kong University of
Science and Technology Science and Technology Science and Technology

