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Debugging can be much facilitated if one can identify the evolution commit that introduced the bug leading to
a detected failure (aka. bug-inducing commit, BIC). Although one may, in theory, locate BICs by executing the
detected failing test on various historical commit versions, it is impractical when the test cannot be executed
on some of those versions. On the other hand, existing static techniques often assume the availability of
additional information such as patches and bug reports, or the applicability of predefined heuristics like
commit chronology. However, these approaches are ineffective when such assumptions do not hold, which
are often the case in practice. To address these limitations, we propose SemBIC to identify the BIC of a bug by
statically tracking the semantic changes in the execution path prescribed by the failing test across successive
historical commit versions. Our insight is that the greater the semantic changes a commit introduces

concerning the failing execution path of a target bug, the more likely it is to be the BIC. To distill
semantic changes relevant to the failure, we focus on three fine-grained semantic properties. We evaluate the
performance of SemBIC on a benchmark containing 199 real-world bugs from 12 open-source projects. We
found that SemBIC can identify BICs with high accuracy – it ranks the BIC as top 1 for 88 out of 199 bugs, and
achieves an MRR of 0.520, outperforming the state-of-the-art technique by 29.4% and 13.6%, respectively.
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1 Introduction
During software evolution, developers may inevitably introduce bugs into software systems. Iden-
tifying the commits that introduce bugs (bug-inducing commits, or BICs in short) facilitates
debugging and repair [28, 45–47], thus attracting interest from both academia and industry.
A dynamic approach to running test suites against all commits is, in theory, a solution to

identifying BICs. However, the nontrivial overhead of running tests and the incompatible or
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outdated build/execution dependencies prevents adopting this solution in practice. In addition,
compiling and executing test code on historical versions are reported to be more challenging (the
success rate is one-fourth compared with compiling source code [26]. While the Bisection algorithm
and its variance [2, 9] adopt a binary search strategy to prune the search space for BICs, they do
not address the issues like dependency incompatibility or dependency unavailability. To get around
the difficulties encountered by dynamic approaches, static techniques are proposed to identify
BICs based on extra information such as patches [4, 11, 12, 23, 39] (i.e., the fix for the given test
failure), bug reports [31], and predefined heuristics based on commit timestamps [2]. However,
such information may not always be available or applicable, hindering the adoption of these static
techniques. In addition, using the information of commit time could be misleading and point to
an innocent commit (see Section 2 for more details). These approaches are ineffective when the
prerequisites are not met, which is often the case in practice.

Among these existing techniques, Bisection (i.e., dynamic test execution combined with binary
search) is theoretically ideal but often impractical for automation. Other static techniques attempt
to address the limitation of dynamic approaches, but they do not look into the root cause of the test
failure. Therefore, we seek a practical workaround for the BIC identification task that addresses
the issue (i.e., identifying BIC of the given bug) from the root cause of the bug. Essentially, the
shift from a passing to a failing test stems from semantic changes causing behavioral differences
along the execution path of the failing test (i.e., the failing path). Thus, we propose to use static
semantic analysis to approximate dynamic execution. The insight is that a BIC typically introduces
significant semantic changes concerning the failing path, thus leading to test failure. In other words,
the more a commit contributes to the failing path, the more likely it is a BIC.
To achieve this goal, the core challenge lies in distilling code semantic changes concerning the

failing path from each commit. First, distilling the semantic changes relating to the failing path for
effective BIC identification is yet to be investigated. Though there is existing work utilizing semantic
analysis for different tasks (e.g., change impact analysis [33], code clone detection [37, 48]), these
methods are not designed for capturing the semantic differences along test execution paths that
result in divergent test outcomes in order to identify BICs. Second, deciding what kinds of semantic
properties should be tracked for precise BIC identification remains unknown.Not all code changes made
by commits should be blamed. For example, a variable renaming or code structure reorganization
is unlikely to introduce a bug, while a change in branch condition (e.g., if (a > b) is changed to
if (a == b)) is more likely to introduce a bug. Noise from code changes that are less likely to be
at fault may reduce the accuracy of BIC identification.

To address the above challenges, inspired by prior studies [20, 24, 53] utilizing program semantics,
we propose to track the code changes with three semantic properties: (i) path constraints (e.g., a
change from if (a > b) to if (a == b)), (ii)method invocations (e.g., a change from a.getMax()
to a.getMin()), and (iii) return statement (e.g., a change from return NaN to return 0)). On
top of these three properties, we then propose our approach, SemBIC, a code-change-aware BIC
identification framework that does not rely on dynamic execution and extra information like bug
reports or patches. In particular, given a failing test, SemBIC reduces the search space by filtering
out the irrelevant commits according to the failing test, then ranks candidate commits according to
how much they change the semantics related to the test failure. Our goal is to show the feasibility
of our insight, and one could easily extend SemBIC to embrace more semantics representations.

We evaluated SemBIC with a benchmark consisting of 199 real-world bugs from 12 open-source
projects. Overall, the evaluation results show that our technique can identify BICs with high
accuracy. Specifically, SemBIC ranks the real BIC as top-1 for 88 bugs out of the total 199 and
achieve an MRR of 0.520, outperforming the state-of-the-art (SOTA) BIC identification techniques
by 29.4% and 13.6%. Additionally, SemBIC stands to gain from more refined and precise fault
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1 @Test
2 public void testAddNaN() {
3 Complex x = new Complex(3.0, 4.0);
4 Complex z = new Complex(1, nan);
5 Complex w = x.add(z);
6 
 Assert.assertTrue(Double.isNaN(w.getReal()));
7 Assert.assertTrue(Double.isNaN(w.getImaginary()));
8 }

Listing 1. Failing Test of Subject Math-53

1 public Complex add(Complex rhs)
2 throws NullArgumentException {
3 MathUtils.checkNotNull(rhs);

4 + if (isNaN || rhs.isNaN) {

5 + return NaN;

6 + }

7 return createComplex(real + rhs.getReal(),
8 imaginary + rhs.getImaginary());
9 }

Listing 2. Patch of Subject Math-53

localization (FL) techniques in the future, as our experiments indicate its performance enhances
with the improvement of FL results. Our evaluation results also confirm the contribution of all the
three semantic properties and the importance of a multi-dimensional semantic analysis in boosting
BIC identification accuracy.

In summary, we made the following key contributions in this paper:
• Originality: We introduce SemBIC, a technique that identifies BICs by statically tracking the
code semantic changes along the execution path prescribed by failing tests across successive
historical commit versions.

• Approach: To distill code changes relevant to the failure, we propose to focus on three fine-
grained semantic properties, so as to characterize program behavior changes along the path
prescribed by the failing tests that lead to different test outcomes.

• Evaluation: We conduct a series of experiments to evaluate the effectiveness of SemBIC across
subjects from various projects, comparing it with several baseline techniques including the SOTA.
The evaluation results show that our technique can achieve overall high accuracy in identifying
BICs. SemBIC ranks the real BIC to top-1 for 88 bugs out of the total 199 and achieve an MRR of
0.520, outperforming the SOTA BIC identification technique by 13.6%.

2 Motivating Example
In this section, we illustrate our insights with a real-world example in Defects4J [22]. Listing 1

shows the failing test that reveals a real bug in Math-531 from project commons-math2. The test
case testAddNaN is checking if Complex.add correctly handles the case where any of the operands
is NaN. Specifically, it checks if the method add returns NaN when it receives an NaN as an argument.
The fault is caught at Line 6 by an assertion. To fix this bug, developers added an early return in
Lines 4-6 of method add to handle the NaN case as shown in Listing 2.
Figure 1 shows the evolution of the buggy method add. The method was first introduced by

commit ① 8df2577 with a correct implementation. The bug was later introduced by the BIC③

1https://program-repair.org/defects4j-dissection/#!/bug/Math/53
2https://github.com/apache/commons-math
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1 +	 public Complex add(Complex rhs) {
2 +	 	 if (isNaN() || rhs.isNaN()) {
3 +	 	 	 return NaN;
4 +	 	 }
5 +	 	 return new Complex(real + rhs.getReal(), 
6 + 	 	 	 imaginary + rhs.getImaginary());
7 +	 }

1	 public Complex add(Complex rhs) {
   -	 	 if (isNaN() || rhs.isNaN()) {
   -	 	 	 return NaN;
   -	 	 }
2	 	 return new Complex(real + rhs.getReal(), 
3	 	 	 imaginary + rhs.getImaginary());
4	 }

 ① Method-introducing Commit:  8df2577

      Date:  Oct 30 19:42:43 2003

1	 public Complex add(Complex rhs) {
2	 	 if (isNaN() || rhs.isNaN()) {
3	 	 	 return NaN;
4	 	 }
5 +                         
6	 	 return new Complex(real + rhs.getReal(), 
7 	 	 	 imaginary + rhs.getImaginary());
8	 }

 ② Commit:  0a90446

      Date:  Nov 14 22:25:28 2003


 ③ BIC:  6ef3b29

      Date:  Dec 22 21:16:32 2005


1	 public Complex add(Complex rhs) {
   -	 	 return new Complex(real + rhs.getReal(), 
2 +	 	 return createComplex(real + rhs.getReal(), 
3	 	 	 imaginary + rhs.getImaginary());
4	 }

 ④ Commit:  912d9be

      Date:  Nov 18 23:38:05 2007


1 -	 public Complex add(Complex rhs) {    
2   	 	 return createComplex(real + rhs.getReal(), 
3	 	 	 imaginary + rhs.getImaginary());
4	 }

 ⑤ Commit:  26dac5a

      Date:  Sep 5 17:36:48 2009


1 -	 public Complex add(Complex rhs) {    
1 + 	 public Complex add(Complex rhs)
2 +	 	 throws NullArgumentException {
3 + 	 	 MathUtils.checkNotNull(rhs);
4   	 	 return createComplex(real + rhs.getReal(), 
5	 	 	 imaginary + rhs.getImaginary());
6	 }

 ⑥ Commit:  e9c6d1d

      Date:  Jun 5 14:59:29 2011


1  	 public Complex add(Complex rhs)

2 	 	 throws NullArgumentException {
3  	 	 MathUtils.checkNotNull(rhs);
4 +	 	 if (isNaN() || rhs.isNaN()) {
5 + 	 	 	 return NaN;
6 + 	 	 }
7   	 	 return createComplex(real + rhs.getReal(), 
8	 	 	 imaginary + rhs.getImaginary());
9	 }

 ⑦ BFC:  7707b0b

      Date:  Jun 5 14:59:29 2011


Fig. 1. Evolution of the Buggy Method in Subject Math-53.

6ef3b29, which incorrectly removes the branch that handles NaN, in December 2005. After that,
the buggy method was subsequently modified by various commits before it was fixed by bug-fixing
commit (BFC) 7707b0b in June 2011, which is over five years after the introduction of BIC.

During software evolution, two main factors render the Bisection algorithm inapplicable to this
bug. First, test dependencies (e.g., the private variable nan used in line 4 in Listing 1) related to the
assertion that actually triggers this bug (i.e., line 6 in Listing 1) are not available before commit
version 6ef3b29. Second, the upgrade of unit tests to JUnit 4 [21] in March 2011 with commit
a4bbdaf (i.e., a commit submitted between commit ⑤ and commit ⑥) complicates the automation
of the Bisection algorithm. On the other hand, since the SOTA technique Fonte [2] leverages a
temporal heuristic to identity BIC, it mistakenly identifies commit e9c6d1d as Top-1 suspicious
BIC because it is the latest commit that modified the method add.

To address such limitations, we employ code analysis statically instead of applying direct dynamic
test execution against historical commits. Furthermore, our static analysis focuses on semantic
changes related to the test failure for BIC identification, rather than relying on predefined rules
based on ancillary information. Intuitively, SemBIC estimates if the outcomes (i.e., pass/fail) of
the failing test between two consecutive program versions would differ based on their semantic
differences along the failing test’s execution path. If the differences are significant, the test outcomes
of the failing test on these two versions are estimated to be different. By estimating the committed
versions in a reverse temporal order, SemBIC identifies the BIC for the failing test.

Fundamentally, the transition from a passing (or fail-to-compile) to a failing test is caused
by the changes in semantic information along the test execution path. Although dynamic test
execution can precisely capture semantic information, as previously explained, it is impractical to
implement in real-world scenarios. Thus, we aim to develop a static mechanism to estimate the
semantic differences without program execution. Inspired by previous research works [20, 24, 53]
that leverage program semantics tailored for different tasks and analysis systems, we focus on
semantic properties that are more likely to change program dynamic behaviors along a specific test
execution path. In the example shown in Figure 1, on the correct commit ② version, the assertion
triggering the bug (Line 6 of test testAddNaN in Listing 1) passes because variable w is assigned to
NaN with the correct implementation of method add. In the correct method add implemented in
correct commit ② version, given the input Complex(1, nan) (according to Line 4-5 in Listing 1),
the second constraint of the if statement (i.e., Line 2 in commit ②) is satisfied. The constraints
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FAIL
Buggy Commit

Failing Test

Candidate C3Candidate C2Candidate C1
Older


Commits

Ranked List of BIC Candidates:     C2, C3, C1, ...

1.0
 1.0
 0.2
 Commit Score


0.8


I. Candidate Selection

II. Semantics Summarization

III. Commit Ranking Outlier


Fig. 2. Overview of SemBIC.

are implemented by the invocation isNaN. Then the program returns NaN and exits method add.
After committing BIC ③, the buggy method add wrongly returns a new object (line 2-3 in BIC ③
in Figure 1) without constraint validation by the method invocation isNaN (Line 2 in commit ②
in Figure 1), leading to the assertion failure. Based on these observations, SemBIC characterizes
the semantics prescribed by the failing execution path based on three properties: the constraints
imposed by the logical expressions evaluated, the methods invoked, and the return statement
visited by the path.

In summary, we observe that failure-relevant semantic information can effectively characterize
program behavior to approximate the test outcome without dynamic execution. We propose to
estimate whether the outcomes of a failing test between two consecutive program versions will differ,
based on significant semantic differences with respective to three properties (i.e., path constraints,
method invocations and return statement) along the failing test’s execution path. SemBIC identifies
the BIC responsible for the failing test by performing this estimation on committed versions in
reverse chronological order. The BIC is likely to be the commit that introduces the most significant
semantic changes along the failing path.

3 Methodology
Given a set of commits and tests (including a few failing tests that trigger a specific bug and a set of
passing tests), SemBIC outputs a prioritized list of suspicious commits. As illustrated in Figure 2, it
comprises three phases:
• Phase I: Candidate Selection. SemBIC is designed to rank the commits based on their suspi-
ciousness. Since not all the commits are relevant to the bug, including the irrelevant commits
will not only increase the computation resource taken by SemBIC but also increase developers’
burden in checking the resulting rank. Therefore, in the first phase, we select the candidate
commits that are relevant to the failing test. This can help narrow down the search space of
SemBIC and provide developers’ with a cleaner rank.

• Phase II: Semantics Summarization. Due to the difficulty of running the failing test on
historical versions [26] in practice, we opted for a static approach to estimate the test execution
on historical versions. Specifically, for each of the relevant commits identified in Phase I, we
generate a summary of its semantics, which captures how the behavior of the program responds
to test inputs, offering a high-level overview of the program behavior rather than syntactic
characteristics.

• Phase III: Commit Ranking. Based on the insight that the BIC contributes the most to the
test failure, we track the semantic changes of each commit by calculating the differences in the
semantic summary from its previous version. We quantify the semantics difference with the
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edit distance between the tree representations of the semantic summaries. Finally, we rank the
suspiciousness of each commits based on their semantic difference and fault localization scores.

3.1 Candidate Selection
Given a set of commits and tests that can trigger a bug, it is unnecessary to analyze all the commits
in detail. Thus, we first select commits that related to the failing tests to narrow down the search
space. We achieve this in two steps, i.e., we first identify the suspicious methods relating to the
failing test, then identify the suspicious commits that relate to these suspicious methods from all
commits.
Suspicious Method Identification.We first run the tests on a commit where the tests fail in

order to gather the execution path, (i.e., failing path). Along the path, we can obtain all the methods
invoked by the failing tests (i.e., suspicious methods). However, the number of methods invoked
by failing tests could be huge, and not all of them should be blamed. For example, if a method
happens to be invoked by a falling test while all the passing tests extensively invoke it, then it is
unlikely to be responsible for the bug. So we utilize a classic FL approach (i.e., spectrum-based fault
localization, SBFL) [1, 13, 30, 44, 50, 52] to further identify more suspicious methods.
To achieve more precise localization to the specific bug, it is important to select test cases

(including both passing and failing tests) carefully [5]. Note that there could be multiple bugs in
commit versions (i.e., programs); each time, we only focus on the bug triggered by the given failing
tests. Since SBFL compares the proportion of methods’ participation in failing/passing tests, the
suspiciousness of buggy methods could be underestimated by involving too many irrelevant passing
tests. Thus, we select the passing tests that are more likely to test the methods similar to those
invoked by the failing tests. In particular, according to the set of given failing tests, we first collect
all the classes loaded by these failing tests (i.e., suspicious classes). By doing so, we can exclude the
classes irrelevant to the failure. Then, we consider two criteria for relevant passing test selection.
First, according to the naming convention, for each loaded class, we keep the passing test classes
whose name is a permutation of the loaded class name and Test. For example, suppose the loaded
class is named ClassA, then either TestClassA or ClassATest will be kept if they are passing
tests. Note that the selected tests should be in the same package as the suspicious classes. Second,
according to the suspicious classes, it is possible that some tests that do not obey the naming
convention. To cover this situation, we also keep the passing tests that load any of the suspicious
classes. Note that this step scans the import classes and checks whether they exist statically, for
efficiency.
After selecting relevant passing tests, the suspicious scores of the suspicious methods can be

calculated against the given failing tests and the selected passing tests. In particular, for each
method, we profile each statement by a suspicious score and use the highest suspicious score
within that method to represent the suspiciousness of the method (i.e., the suspicious score of the
method). We use Ochiai formula [1, 30, 44, 50, 52] to calculate the suspicious score. Since FL is
not the focus of this work, one can easily turn to more advanced formulas or FL techniques to
improve SemBIC. Finally, we keep the methods whose suspicious scores are higher than zero as the
suspicious methods.

Suspicious Commit Identification. After suspicious methods are identified, the commits that
involve the changes to these methods are naturally to be regarded as suspicious commits. To achieve
this, we conduct a two-step selection to effectively filter out irrelevant commits.

First, in order to enhance the overall efficiency, we select commits that modified any of the Java
files containing definitions of Java classes loaded by failing tests. This step efficiently reduces the
search space by quickly filtering commits based on Java source file name matching, utilizing the
loaded class information collected from the previous failing path collection. Second, we eliminate
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if (rhs.isNaN())

if (isNaN()) ⟨BinaryOp,none,+⟩

⟨Invocation,

getReal,

getReal()→ double⟩


⟨ParamRef,0,Complex⟩


⟨Object,

field#double,

real⟩
return NaN;

return createComplex( real+rhs.getReal(),

         imaginary+rhs.getImaginary());

Method Name:
Input parameter:
Return type: Complex

Complex rhs

add

True

True

False

FalsePath 1: ①②
①③②
①③④

Path 2: 
Path 3: 

①

②
③

④

Fig. 3. CFG of the Buggy Method in Subject Math-53 and an Example for Expression Representation.

commits that only modified uninvoked methods that are defined in Java classes loaded by failing
tests or invoked methods with zero suspiciousness. From the gathered file-changing commits,
we extract the modified methods in the changed Java source files to further select commits that
modified the suspicious methods (i.e., methods along the failing path with non-zero suspiciousness).

3.2 Semantics Summarization
After selecting the candidate commits, SemBIC summarizes the semantics associated with the
failing path for each commit version. We leverage semantic summaries to effectively capture the
semantic differences that lead to different test execution outcomes between the failing path in the
buggy version and the failing path in the candidate commit versions. They will be forwarded to the
following phase for BIC identification by commit ranking with semantic changes.

Path semantics summarization. We maintain that path semantics are typically encapsulated
by the control and data flow within the failing paths. The primary challenge lies in adopting a
semantic-sensitive representation that ensures semantically-similar paths are closely aligned while
those with dissimilar semantics remain distinctly separate. We consider three fine-grained control
and data flow properties, including path constraints, method invocations and return statements,
for path semantics summary generation.

• Path Constraints. The failing path constraints of a method are the branch conditions that
are satisfied by the failing path in the method. They provide concrete information on the
conditions under which the programwill take the failing path. This is crucial for understanding
a program’s behavior and deducing its response to the input of the the failing test. Consequently,
the collected path constraints help discern the semantic differences between the code associated
with the failure from the buggy and commit versions. Specifically, SemBIC stores the collected
path constraints in a list, and each constraint is represented by an abstract syntax tree of
the constraint’s logic expression. Figure 3 shows the control flow graph (CFG) of the buggy
method in Subject Math-53. In Figure 4, we depict the path constraints along path 3 in the
CFG of Figure 3. In this path, two constraints from basic blocks 1 and 3 are represented as
trees, respectively. Since the program only runs along this path when both constraints are
satisfied, we arrange the two constraint trees in a list in order as part of the path semantics
summary. In the example in Figure 1, there is no constraint in the given buggy commit version
⑥ and BIC candidates ③④⑤, while there are path constraints in BIC candidate ②, which is
actually a correct commit version before submitting BIC ③. Based on the differences in path
constraints, SemBIC identifies BIC ③ as highly suspicious for introducing the bug.

• Method Invocations. Method invocations explicitly capture the hierarchy and dependencies
between methods, including both control flow information of how execution jumps from
one method to another and data flow information of how data is likely to flow from callers
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to callees. Consequently, method invocation changes along the path are likely responsible
for alterations in program behavior and are a crucial component of path semantics. Method
invocations are also maintained by a list that records all method calls along the path. For each
method invocation, we record its signature. And we further resolve the information of the
corresponding object if we meet an instance invocation. The method invocation sequence
for path 3 collected by SemBIC, is detailed in Figure 4. In the example in Figure 1, the code
lines removed by the BIC ③ involve method invocations along the failing path. Along the
failing path (i.e., the path that returns the newly-created Complex object), correct commits
①② before BIC ③ use two instance invocations of method isNaN for condition checking while
buggy commits ③④⑤ do not.

• Return Statements. Return statements encapsulate the final output of a method, thereby
influencing the data and control flow within the caller methods. It is common that the exe-
cution path that follows a method call depends on the value returned by that method. This
return value can influence conditional branches in the calling function, thus shaping the pro-
gram’s control flow. Since cross-method path enumeration will encounter the problem of path
explosion, which is especially common in complex project (e.g., commons-closure) where a
failing assertion goes through thousands of methods, we conduct semantic summarization
at the method level using intra-procedural analysis. Thus, return statements can serve as a
complement for inter-procedural analysis. The content of each return statement is treated as
an expression and can also be effectively represented by a tree, as illustrated in the example in
Figure 4.

We performed intra-procedural data-flow analysis by resolving the definition of each variable for
collecting semantics. Finally, the three properties are integrated together to represent the semantics
of the failing path.
Path extraction and analysis. Since the path comprises method invocations, we begin by

constructing a call graph of the failing test. Then, SemBIC analyzes methods that (1) are deemed
suspicious (i.e., a method whose suspiciousness computed by existing FL technique is higher than
zero) and (2) were modified by the current candidate commit, and generates a path semantics
summary for each suspicious method. The call graph is constructed during dynamic analysis,
containing only executed method invocations, and is used in static analysis. During static analysis,
SemBIC will not dive into a method if it is non-suspicious or unmodified by the analyzed commit.
Hence, the path semantics summary of a commit version is structured by the path semantics
summaries from each invoked method in the call graph of a failing test. The analysis process of
these suspicious methods can be divided into two situations.
Dynamic path analysis for the methods in the given buggy program version. For the given buggy

program, we have obtained the failing path via dynamic execution. So, we only need to analyze the
determined failing path in each failure-related method. In the CFG of the buggy method in Subject
Math-53 shown in Figure 3, SemBIC focuses on the red-highlighted failing path, and collect the
failing paths determined by execution for each failure-relevant method in the given buggy version.
Note that we collected all unique paths traversed by test execution if the test invokes the same
method multiple times.

Static path analysis for methods in the historical commit versions. For path-undetermined methods
changed by candidate commits, we apply over-approximation by enumerating paths within failure-
related methods. We use a depth-first search (DFS) algorithm to traverse all paths in the CFG of the
failure-related method. Therefore, we construct a directed cyclic graph encompassing all possible
paths. Each path starts from an entry block of the method and ends with an exit block (e.g., a
return or throw statement). Taking the CFG in Figure 3 as an example, SemBIC enumerates 3
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⟨Comparator,none,==⟩Constraint 1

from basic block ①
⟨Invocation,isNaN,isNaN()→boolean⟩

⟨Object,this, Complex⟩

⟨PrimConstant,int,0⟩

⟨Comparator,none,==⟩

⟨Invocation,isNaN,isNaN()→ boolean⟩

⟨ParamRef,0,Complex⟩

⟨PrimConstant,int,0⟩

Constraint 2 

from basic block ③

Property 1:  Path constraints 

Property 3:  Return statement 

Property 2:  Method invocations 

isNaN()→ boolean


isNaN()→ boolean


getReal()→ double


createComplex(double,
double)→ Complex


⟨Object,this,Complex⟩


⟨ParamRef,0,Complex⟩


⟨ParamRef,0,Complex⟩


⟨Object,this,Complex⟩


⟨ParamRef,0,Complex⟩
getImaginary()→ double


⟨Invocation,createComplex,createComplex(double,double)→ Complex⟩

⟨BinaryOp,none,+⟩

⟨Object,this,Complex⟩

⟨BinaryOp,none,+⟩

⟨Invocation,getReal,getReal()→ double⟩

⟨Object,field#double,imaginary⟩
⟨ParamRef,0,Complex⟩
 ⟨ParamRef,0,Complex⟩


⟨Invocation,getImaginary,getImaginary()→ double⟩

⟨Object,field#double,real⟩


Fig. 4. Semantic Properties for Path 3 in Fig. 3.

possible paths and gathers all as candidates. We limit each edge (i.e., transitions between basic
blocks) to be traversed a maximum of once per path to handle loops efficiently. In summary, we
collect a set of possible paths for each suspicious method changed by candidate commits in the
historical versions.
Expression representation. After extracting failing paths for both the given buggy version

and the historical commit versions, SemBIC preserves failure-relevant semantics by generating
a summary for each path. To ensure soundness and maintain analytical feasibility, we opt for a
relatively conservative way of over-approximating path semantics.
Expressions are fundamental constructs in programming languages, encompassing variables,

predicates and more complex constructs. Inspired by previous work [20, 24, 53] that leverages
program semantic information for different purposes, we introduce an informative Tree Structure
for expression representation, specifically designed to capture fine-grained semantic features in
BIC identification task, based on the following two insights. First, all expressions can ultimately
be resolved into components consisting solely of constants, input parameters, objects, operators
and invocations by tracing the def-use chains. Second, component attributes to record should be
carefully customized according to different component types (e.g., we need to record the method
name and parameter types of an invocation, while recording the symbol of a binary operator) for
fine-grained semantics characterization. Accordingly, we categorized the components into 8 types
as illustrated in Table 1. For each expression component, we represent it as a node described by
three attributes: Type (T), Identifier (D) and Value (V), denoted by the following triple.

𝑁 B ⟨𝑇, 𝐷,𝑉 ⟩
Type belongs to the categorized eight component types. Identifier is typically the simple name
of a method, the type of a primitive variable, or the simple class name of a class-based object.
Values are defined separately for each node type to record certain path information. For instance,
attribute Value of a primitive constant type (i.e., PrimConstant in Table 1) consists of the type of the
constant variable (e.g., int, string, etc.) and the concrete value. Note that only nodes of the types
PrimConstant, Object, ParamRef, Invocation and NewExpr can be leaf nodes.
The operands of non-leaf nodes can iteratively be decomposed into leaf nodes. We illustrate

with a concrete example in Figure 3. For expression real+rhs.getReal() in the return statement
shown at the bottom of the CFG, SemBIC first obtains its operator (i.e., +) with BinaryOp type as
root node, and get the left operand (i.e., object real) as the left child node and the right operand
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Table 1. Definition for Attributes of Expression Nodes.

Type Explanation Identifier Value Example

PrimConstant ¨ Constants of
primitive types.

Type of the con-
stant.

Concrete value of the vari-
able.

double#1.2,
string#"str_cur"

ObjectRef ¨ Reference of ar-
ray, field and class
objects.

Type of the object.
For array and
non-object field,
we also record
their base types.

The declaring class of the
objects and non-object
fields.

array#float#org.
apache.commons.
math.complex. Complex

ParamRef ¨ Reference of
method input
parameters.

The index of the
parameter.

Type of the parameter. 0#string

Comparator Operators for
value compari-
son.

- Symbol of the comparator. >, ≥, <, ≤, ==, ! =

BinaryOp Operators for
binary computa-
tion.

- Symbol of the binary oper-
ator.

+, −, ∗, /, %,
≪, ≫, &, |

UnaryOp Operators for
unary computa-
tion.

- Symbol of the unary oper-
ator.

+, −, ++, −−, !, ∼

Invocation ¨ Method invoca-
tions.

Simple Name
of the invoked
method.

Signature of the invoked
method.

org.apache.commons.
math.complex.Complex
: double getReal()

NewExpr ¨ Expressions
to create new
objects.

Type of the new
object.

Base type of the object if
available.

array#int

Nodes Type with ¨ can be leaf nodes.
Though fields may not be objects, we include the references of fields in ObjectRef category.
For unary operators, + denotes unary plus, − denotes unary minus.

(i.e., expression rhs.getReal()) as the right child node. Then, SemBIC further resolves the right
child node and generates a child leaf node of ParamRef type.

In this way, SemBIC generates a path semantic summary for each commit version by integrating
the semantic information associated with the failing path from the three properties. For the given
buggy version, the failing execution determines a single path. For candidate commit versions,
we perform static analysis on all possible paths relevant to the failure and maintain a path list.
The semantic summary for each commit, structured by the failing test call graph, comprises
path semantic summaries from each method associated with the failing path. They are helpful in
approximating the test execution on different commit versions. SemBIC then passes these semantic
summaries to phase 3 for BIC identification via commit ranking.

3.3 Commit Ranking
With the path semantics summaries generated in the previous phase, SemBIC ranks candidate
BICs according to their suspiciousness. The intuition is that the more significant the semantic
changes along the failing path, the more likely the test outcomes between the buggy version and
the candidate commit versions will differ. In other words, SemBIC prioritizes commits with more
significant failure-relevant semantic changes as probable BICs. Specifically, SemBIC first calculates
the semantic similarity between each candidate commit and the faulty commit in order to quantify
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the degree of semantic changes. Subsequently, it ranks the candidates according to the extent of
semantic changes observed, giving priority to those with significant alterations.

Semantic Property Similarity Calculation. Since expressions that contribute to the semantics
summary are represented in Tree Structures, we first explain how SemBIC computes the similarity
between two trees. Given two trees 𝑇1 and 𝑇2, SemBIC calculates their similarity as follows.

simiT(𝑇1,𝑇2) = (1 + TED(𝑇1,𝑇2))−1 (1)

TED(𝑇1,𝑇2) denotes Tree Edit Distance (TED) that quantifies the cost measured as the numerical
value of effort required to transform tree 𝑇1 into tree 𝑇2. We follow Pawlik et al. [29] to implement
TED calculation. Specifically, TED equals the least number of basic edit operations (i.e., node
insertion, deletion, and modification) required to transform one tree into another. Each basic edit
operation is associated with a numerical cost value, specifying the efforts the operation required in
the tree transformation. In our design of SemBIC, the cost is 1 for insertion and deletion operations.
For modification operations, if two nodes match precisely, no edit is required, and thus the cost is
0. If two nodes do not match, i.e., at least one of the node attributes does not match, each of the
unmatched attribute pairs requires one-third of the operation to make them the same (i.e., the edit
cost is thus 1

3 ). The overall cost of transforming one tree into another is the sum of the costs of all
operations required to make the two trees identical.
While the return statement of a path is denoted by only a Tree Structure, path constraints and

method invocations are recorded by lists as there might be multiple along each path. Given two lists
𝐿1 and 𝐿2, SemBIC computes the list similarity simiL(𝐿1, 𝐿2) by finding the optimized mapping (i.e.,
the mapping with the maximum sum of element pair similarity) between them. More specifically,
we leveraged the Dynamic Programming algorithm designed for path constraint mapping and
method invocation mapping proposed by Xie et al. [53] to compare the similarity between element
pairs from two lists in order. Thus, the similarity between two lists is equal to the proportion of
the optimized mapping length to the longer list length. Note that we use the longer list length as
dominator for normalization, as the worst case is no element of the longer list can exactly match
the shorter list.
As the three semantic properties we consider are represented in different formats (i.e., list and

trees), SemBIC calculates the similarity of each property respectively. Constraints along the path
are recorded using a list, with each constraint represented by a tree. Therefore, we compute the
similarity between path constraints by combining the similarity measures of both data structures.
Because method invocations are maintained by a list that records all invoked methods in the path,
we compute the similarity between method invocation sequences by the list mapping algorithm [53].
For return statements represented with trees, the similarity is calculated by TED.
Commit Prioritization. SemBIC considers the average similarity across all three semantic

properties as the similarity metric for a complete path summary. Given two paths 𝑝1 and 𝑝2, we
denote the collected path constraint sets as 𝑃𝐶1 and 𝑃𝐶2, method invocation lists as𝑀1 and𝑀2 and
return statement trees (i.e., the expression trees of the return value) as 𝑅1 and 𝑅2. The similarity
between the two paths is calculated as follows.

simiP(𝑝1, 𝑝2) =
1
3
(simiL(𝑃𝐶1, 𝑃𝐶2) + simiL(𝑀1, 𝑀2) + simiT(𝑅1, 𝑅2)) (2)

SemBIC utilize existing FL techniques to quantify the suspiciousness of methods, and further
assign weights to the methods based on their suspiciousness. Given the 𝑖𝑡ℎ method𝑚𝑖 out of all 𝑛
suspicious methods and 𝑝 𝑗 is the 𝑗𝑡ℎ path of all 𝑘 possible paths in each suspicious method, we
measure𝑚𝑖 ’s weight weight(𝑚𝑖 ) regarding to its suspicious score score(𝑚𝑖 ) and the method’s rank
rank(𝑚𝑖 ) in descending order of suspicious scores. We explore four different weighting formulas,

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE062. Publication date: July 2025.



FSE062:12 Xiao Chen, Hengcheng Zhu, Jialun Cao, Ming Wen, and Shing-Chi Cheung

as outlined below.

weight(𝑚𝑖 ) =


score(𝑚𝑖 )
1/rank(𝑚𝑖 )
score(𝑚𝑖 )/rank(𝑚𝑖 )
score(𝑚𝑖 )rank(𝑚𝑖 )

(3)

For the given buggy program version by commit 𝑐 𝑓 , the path 𝑝 𝑓 is determined by the failing test
execution. For a program version by a candidate commit 𝑐 ⊆ 𝐶 , we can obtain a list of possible
paths, i.e., 𝑃 = [𝑝1, 𝑝2, ...]. For each method in the failing test call graph, we approximate the path
a candidate commit version would take given the failing test inputs by selecting the path among
all 𝑘 possible paths with the highest semantic similarity to the determined failing path. Taking
the different suspiciousness of methods in the call graph into consideration, SemBIC scores each
candidate by semantic similarity as follows.

commitScore(𝑐) =
𝑛∑︁
𝑖=1

(
weight(𝑚𝑖 ) ·

𝑘max
𝑗=1

simiP
(
𝑝 𝑗 , 𝑝 𝑓

) )
(4)

With commit scores, we further apply outlier analysis to rank the candidates. Intuitively, we
consider commits that exhibit larger score disparities than their parent commits to reflect more
significant semantic changes. In other words, instead of relying on absolute similarities, we rank
commits based on the difference in similarity between them and their preceding commits to avoid
going back too far to the early commits that probably have lower semantic similarities compared
to the later commits. Based on this intuition, SemBIC generates a ranked list of candidate commits,
ordered in descending suspiciousness of being the BIC.

Our path constraints are represented in product-of-sum form. The time complexity of our path
comparison algorithm is 𝑂 (𝑝2𝑡2) where 𝑝 is the number of maxterms in constraint and 𝑡 is the
expression tree size of each maxterm. This is because we leverage list mapping algorithm [53] with
a complexity of𝑂 (𝑝2) to compute the similarity between the lists of maxterms, and for each pair of
maxterms, we utilize TED with a complexity of𝑂 (𝑡2) to calculate the similarity on their expression
trees.

4 Evaluation Design
This section presents the design of our evaluation of SemBIC.

4.1 ResearchQuestions
To evaluate the effectiveness of SemBIC, we conducted a series of experiments to answer the
following three research questions.
• RQ1. How effective is SemBIC in BIC identification? This research question evaluates the
performance of SemBIC in BIC ranking. Towards this goal, we first investigate SemBIC’s ranking
results using different weighting formulas across various projects. Then, we compare SemBIC
against three baseline ranking-based BIC identification techniques.

• RQ2. How does the precision of FL affect the performance of SemBIC? This research
question assesses SemBIC’s effectiveness in removing potential bottlenecks within FL techniques
to explore the theoretical upper bound. To answer this question, we use Fonte, which relies
on FL results, as the baseline and supply the precise FL information (i.e., the buggy method) to
observe changes in ranking performance.

• RQ3. How does each semantic property contribute to the BIC ranking? This research
question aims to further investigate the contribution of semantic analysis. To this end, we use
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1 public final void translate(CharSequence input, Writer out) throws IOException {
2 ...
3 for (int pt = 0; pt < consumed; pt++) {

4 - pos += Character.charCount(Character.codePointAt(input, pos));

5 + pos += Character.charCount(Character.codePointAt(input, pt));

6 ...
7 }

Listing 3. Patch of Subject Lang-6

1 public final void translate(CharSequence input, Writer out) throws IOException {
2 ...

3 - for(int j=0; j<consumed; j++) {

4 - i += Character.charCount( Character.codePointAt(input, i) );

5 + for (int pt = 0; pt < consumed; pt++) {

6 + pos += Character.charCount(Character.codePointAt(input, pos));

7 ...
8 }

Listing 4. Code Changes of BIC b4255e6 for Subject Lang-6 Labeled by Original Ground Truth

each semantic property separately and compare the BIC ranking accuracy to that achieved using
the complete set of semantic properties.

4.2 Benchmark Construction
We collect evaluation subjects by combining two existing BIC datasets provided by An et al. [2]

and Maes-Bermejo et al. [26] respectively. All subjects can be found in the Defects4J [22] dataset,
which provides bug reports and corresponding patches. We exclude two old subjects whose commits,
submitted before the BFCs, were managed using version 1.0 of the software project management
tool Maven [17] due to the dependency and Java version incompatibility issue. This Maven version
has a problem with the resolution of dependencies. As a result, we collected 199 subjects from 12
open source projects using Git as the version control system.

After further investigating the bug subjects and the corresponding BIC ground truth, we found
there are two types of inaccuracy in the ground truth (i.e., the commit that is the actual BIC).
First, there are cases when the BICs pinpointed by the original ground truth did not modify the
buggy methods in the patches provided by Defects4J. Second, in cases where the code under test
was wrongly implemented when first introduced until finally fixed, we observe inconsistencies in
the criteria of ground truth BIC labeling. For some subjects, the original ground truth identifies the
commit that first introduced the buggy method with wrong implementation as the BIC. For example,
in subject Math-93, it labels commit 0a90446, which first introduced the buggy method factorial,
factorialDouble and factorialLog with wrong implementation, as BIC, even though several
commits attempting to fix this bug were submitted before it was finally resolved. For other subjects,
the original ground truth designates the most recent commits that modified the buggy method prior
to the BFC as the BICs. For instance, in subject Lang-6, commit b4255e6, which is the latest
to modify the buggy method translate before the BFC, is labeled as the BIC, despite several
attempts to fix this bug in earlier commits. However, commit b4255e6 should not be blamed for
introducing the bug. This bug was fixed by rectifying the second parameter of method invocation
codePointAt in the buggy method translate as shown in Listing 3. From the code changes shown
in Listing 4, it is evident that commit b4255e6 merely refactored two variables without changing
the program’s functionality, and therefore should not be blamed for introducing the bug. Thus,
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arbitrarily identifying the most recent commit that modified the buggy method as BICs is not a
reliable way for establishing the BIC ground truth.

To mitigate such inconsistencies for unambiguous benchmark construction and fair evaluation,
we manually validated the dataset. There are two potential threats in the validation process, i.e.,
biased data labeling criteria and mistakes in manual validation. To mitigate the first threat, we
strictly followed the criteria proposed by Rodríguez-Pérez et al. named perfect test [35] to mentally
perform the perfect test in historical versions, which was evaluated to be effective for constructing
the BIC dataset. Specifically, given a perfect test passing on a BFC, we check all previous commits
until finding the first commit where the test fails or the test cannot be compiled as the functionality
under test has not been implemented yet. Therefore, we keep the original BIC ground truth
0a90446 for subject Math-93 while changing the original BIC ground truth b4255e6 to a244767
(i.e., the commit that first introduced the buggy method translatewith the wrong implementation)
following the perfect test criteria. To mitigate the second threat (i.e., mistakes in manual validation),
we discussed the relabeled instances during our meetings and reached consensus. We also released
the dataset for validation.

4.3 Implementation Details
To evaluate our approach experimentally, we developed a prototype of SemBIC for Java projects.
The implementation details are outlined below.

Failing test execution path collection. We collect the statement-level coverage using Cober-
tura [8] in order to record path information including loaded classes, invoked methods and executed
basic blocks.
Commit tracking. We use Git [10] to track project commit history as all subjects in the

benchmark are from projects using Git as version control system. For instance, we select the
commits that modified any of the class files loaded by failing tests using Git command git log
<commit_ID> -- <class_file_name>.

Code change extraction. From the gathered file-changing commits, we use JavaParser [19] to
extract the changed methods in the changed class files to further select commits that modified the
suspicious methods.

Path semantics summarization. We utilize Soot [41] to summarize path semantics at method-
level granularity based on Jimple intermediate representation [40, 43]. Our analysis targets the Java
bytecode to capture detailed semantic information precisely. Consequently, we initially compile
the projects from Java source code into Java bytecode. During our experiments, we discovered that
94.4% of the commits could be automatically compiled using a software project management tool
(i.e., Maven [17] or Ant [16]).

4.4 Experiment Setup
For evaluation, we use the following two metrics and four baselines. The details of each metric and
baselineare as follows.

Evaluation metrics. We adopt the following two well-known evaluation metrics for evaluating
the BIC ranking performance.

• Top-𝑘 Accuracy. The Top-𝑘 accuracy is equal to the proportion of subjects where the rankings
of the BICs are within the top k positions. Achieving a high top-1 accuracy allows the results of
a technique to be automatically utilized without the need for human intervention. Additionally,
displaying top-10 results is considered beneficial in real-world debugging scenarios, since a
prior FL study [3] indicates that showing top-10 results strikes an optimal balance between
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result quality and user interface (UI) succinctness. Thus, we choose 𝑘 = 1, 2, 3, 5, 10 for this
metric for a comprehensive evaluation.

• Mean Reciprocal Rank (MRR). This metric refers to the average of the reciprocal rank of the
actual BIC. If the BIC appears at rank 𝑘 in a list of returned results, the reciprocal rank is
computed as 1

𝑘
. Then, the MRR is calculated as 1

𝑛

∑𝑛
𝑖=1

1
𝑘𝑖
, where 𝑛 is the number of all bug

subjects and 𝑘𝑖 is the BIC rank of the 𝑖𝑡ℎ bug subject. A higher 𝑀𝑅𝑅 value indicates that
the BIC typically appears closer to the top of the results list, thereby reducing the manual
effort to conduct further investigations. In cases of tied rankings, the max-tiebreaker rule is
applied to determine the rank. Effectively, if the scoring model is accurate, actual BICs should
consistently receive higher scores and ranks compared to other commits.

Baselines. The bisection algorithm concludes by identifying a specific commit considered to be
the BIC but does not rank commits. Therefore, we exclude it from our evaluation baselines. Thus,
we use the following existing techniques as our evaluation baselines.

• Fonte. We first compare SemBIC with the SOTA BIC identification technique Fonte [2],
proposed in 2023. This method scores and ranks candidate commits by integrating commit
submission time with the suspiciousness of code elements.

• Bug2Commit. Bug2Commit [28] is currently the leading IR-based method for BIC identifica-
tion. This technique ranks candidate commits via leveraging various features from commits
and bug reports to pinpoint BICs. We utilize the implementation by An et al [15], which
is based on Vector Space Model (VSM) [49] using the BM25 vectorizer [34] and the Ronin
tokenizer [18]. Specifically, commit messages, modified files by patches, failing test stack traces
with exception messages and the bug report content are utilized as the model input features.
This information is provided by by Defects4J.

• FBL-BERT. This technique employs a context-aware architecture to address the BIC iden-
tification problem by evaluating the similarity between a query (i.e., the bug report) and a
document (i.e., the software program) [7]. It leverages an adapted BERT-based model to localize
the commits introducing changesets that caused the software bugs. Specifically, FBL-BERT
evaluates the relevance of commits representing by the changesets they introduced to a given
bug report by scoring them using the pre-trained model BERTOverflow [42]. For evaluation,
we utilize the FBL-BERT model, fine-tuned with the provided training dataset using ARC
changeset encoding [14] and Defects4J bug reports as input queries.

• SZZ Unleashed-RA-C. SZZ Unleashed-RA-C [27] is the SOTA implementation of an improved
SZZ algorithm based on SZZ Unleashed [4], denoted as SZZ-RAC. The most important features
that SZZ-RAC introduced include the ability to identify and handle refactoring changes,
ignoring comments when identifying BICs, and the ability of using GitHub as the issue tracker.
The input of this technique is a bug issue denoted with a bug ID, and the output is a set of BICs
of the given bug. However, not all bug issues can be linked to a BFC. To better understand the
advantages and disadvantages of SZZ algorithm, we exclude those bugs that are not linked
to any BFC and calculate the performance of SZZ Unleashed-RA-C on the remaining bugs,
denoted as SZZ-RA-C∗. In addition, since SZZ algorithm generates a set of BICs without
providing any prioritization, we follow the experiment settings of An et al. [2] to randomly
rank the BICs in the set. So the expected rank of the BIC is 𝑛+1

2 when there are 𝑛 commits in
the output commit set.

5 Evaluation Results
In this section, we present the evaluation results with respect to each research question.
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mean: 2004.7
median: 1794.0

mean: 531.5
median: 277.0

mean: 172.0
median: 56.0

Fig. 5. Comparison between the Number of Commits after each Steps in the Phase I (Candidate Selection)

MockitoGsonJacksonDatabindMathLang TimeJacksonCoreCompressCodecClosureCli Jsoup

Fig. 6. Ranking Results of Different Weighting Formulas across Subjects. The horizontal axis represents all

199 subjects grouped by projects in the benchmark, and the vertical axis represents four weighting formulas.

The darker the colors, the lower the BIC rankings.

5.1 RQ1. Effectiveness of BIC Identification.
In order to reduce the search space of candidate commits, SemBIC conducts commit selection in
two steps initially. Figure 5 illustrates the original number of candidate commits and the number of
commits remaining after selection based on loaded classes and suspicious methods respectively,
depicted by median values respectively, across all bug subjects and specifically for different projects.
Overall, the results confirm that our selection strategies can effectively reduce the median number
of candidates to only 3.12% of the original across subjects from all projects. We observe that the
method selection strategy based on suspiciousness remains effective after the candidate set has
been significantly trimmed by considering only loaded classes.

To evaluate SemBIC’s performance using different weighting formulas, we conduct experiments
with the four formulas discussed in the previous section. Figure 6 demonstrates the ranking per-
formance of all 199 subjects across different projects with evaluation matrix Top-𝑘 accuracy. The
darker the colors, the lower the ranking of the BICs. We observe that the ranking performance
of SemBIC varies across projects. SemBIC ranks BICs of most subjects from project Codec, Com-
press, JacksonCore, Lang, Math, and Jsoup with high accuracy, while the ranking performance in
project Closure and JacksonDatabind is relatively unsatisfactory. We also find that the four weight-
ing formulas exhibit resemblance in BIC ranking results, where the highest MRR is 0.520 when
weight(𝑚𝑖 ) = 1/rank(𝑚𝑖 ) and the lowest MRR is 0.498 when weight(𝑚𝑖 ) = score(𝑚𝑖 )rank(𝑚𝑖 ) .

Table 2 compares the performance of BIC identification between SemBIC with weighting formula
weight(𝑚𝑖 ) = 1/rank(𝑚𝑖 ) and other ranking-based BIC identification techniques used as baselines.
The results show that the ranking performance of SemBIC is better than all baselines across
all evaluation metrics, except for SZZ Unleashed-RA-C with identified BFCs (i.e., SZZ-RAC∗) .
Specifically, SemBIC improves MRR by 13.6%, 161.1%, 417.4%, 1530.9% compared to Fonte, SZZ-
RAC, Bug2Commit and FBL-BERT, respectively. It also achieves the highest accuracy across all 𝑘
values in Top-𝑘 metric compared to these four baselines. Furthermore, SemBIC exhibits advantages
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Table 2. Comparison on the Performance of BIC Identification.

Metric

Accuracy

MRR

Top-1 Top-2 Top-3 Top-5 Top-10

FBL-BERT 1 0.50% 6 3.01% 8 4.02% 10 5.02% 11 5.53% 0.032
Bug2Commit 9 4.52% 18 9.04% 21 10.55% 26 13.06% 43 21.61% 0.100
Fonte 68 34.17% 89 44.72% 105 52.76% 119 59.80% 131 65.83% 0.457
SemBIC 88 44.20% 97 48.74% 112 56.28% 124 62.31% 136 68.34% 0.520

SZZ-RAC 21 10.55% 39 19.60% 49 24.62% 58 29.15% 68 34.17% 0.199
SZZ-RAC∗ 21 28.77% 39 53.42% 49 67.12% 58 79.45% 68 93.15% 0.543

SZZ-RAC is short for SZZ Unleashed-RA-C [27].
SZZ-RAC∗ presents the performance of SZZ Unleashed-RA-C among the 73 subjects with BFCs identified.

in ranking the real BICs at the top, improving the Top-1 rankings for 29.4% of the bug subjects.
While the SZZ algorithm demonstrates stronger BIC identification ability with BFCs, outperforming
SemBIC in Top-𝑘 (𝑘 = 2, 3, 5, 10) ranking ratio andMRRmetrics, SemBICstill ranks more bug subjects
whose BICs can be ranked within Top-𝑘 (𝑘 = 2, 3, 5, 10) as only 73 out of total 199 bug subjects
can be linked to BFCs by the SZZ algorithm. On the other hand, SemBIC still surpasses SZZ-RAC∗

largely in Top-1 ranking under the circumstance when BFCs are identified by the SZZ algorithm.
This suggests that SZZ algorithm may suffer from low precision in the BIC identification task.

Discussion of the runtime efficiency. The time consumption for identifying BICs varies across
bugs and projects, ranging from instant to hours, with a median of 2.5 minutes. Specifically, 43.2%
of bugs’ ranking results can be produced within 1 minute and 71.9% within 1 hour.

Answer to RQ1. The choice of weighting formulas has little effect on the BIC ranking perfor-
mance of SemBIC. Overall, SemBIC can achieve good accuracy, especially in subjects from some
projects. It ranks the real BICs to top-1 for 44.20% of the subjects in the evaluation benchmark.
This performance surpasses that of existing techniques in general.

5.2 RQ2. Impact of FL Precision.
Since part of our approach builds upon existing FL techniques, we evaluate its effectiveness by
isolating potential bottlenecks inherent in FL techniques. To achieve this, we supply perfect FL
results to both SemBIC and Fonte, the latter being the only baseline that explicitly utilizes FL results,
to examine how they affect the BIC ranking performance. To ensure accurate FL information, we
compare the patches provided by Defects4J to locate the faults precisely and extract the buggy
method using JavaParser. Figure 7 compares the top-𝑘 accuracy between these two techniques with
SBFL information and with precise FL information. We can observe that SemBIC performs better
as the FL results improve in all accuracy matrices, while the ranking performance of the baseline
technique Fonte deteriorates with perfect FL results when 𝑘 = 1.
Our analysis finds that the performance of Fonte is limited by the false positives arising from

its heuristic where a more recent commit is considered more likely to be the BIC. For instance,
the bug that triggers the failing test in subject Lang-49 is located in the reduce() method within
the Fraction.java file, part of the org/apache/commons/lang/math package. The code lines
associated with the failing test in the buggy method were wrongly implemented when method
reduce()was first introduced in commit 7e8976d, which is the BIC of subject Lang-49. As commit
7e8976d initially introduced the file Fraction.java, three other failure-associated methods with
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Fig. 7. Comparison on the BIC Identification Performance between SBFL and Perfect FL.

Table 3. Comparison among Utilizing Different Semantic Properties.

Accuracy Top-1 Top-2 Top-3 Top-5 Top-10

Fonte 56 28.14% 89 44.72% 109 54.77% 126 63.32% 153 76.88%
SemBIC𝐶𝑜𝑛𝑠 152 76.38% 160 80.40% 172 86.43% 180 90.45% 188 94.47%
SemBIC𝐼𝑛𝑣 154 77.39% 161 80.90% 175 87.94% 183 91.96% 190 95.48%
SemBIC𝑅𝑒𝑡 156 78.39% 165 82.91% 177 88.94% 184 92.46% 189 94.97%
SemBIC 164 82.41% 170 85.43% 179 89.95% 183 91.96% 188 94.47%

SemBIC𝐶𝑜𝑛𝑠 , SemBIC𝐼𝑛𝑣 and SemBIC𝑅𝑒𝑡 are variations of SemBIC that uses a single semantic property.
SemBIC𝐶𝑜𝑛𝑠 uses path constraints, SemBIC𝐼𝑛𝑣 uses method invocations and SemBIC𝑅𝑒𝑡 uses return state-
ment.

relatively high suspiciousness that were also modified in this commit apart from the real buggy
method also count for the suspiciousness of commit 7e8976dwithout precise FL information. Given
the buggy method, the number of suspicious methods changed by commit 7e8976d is reduced to 1
from 4. Since there are other non-BIC commits that also modified the buggy method submitted
after the real BIC, Fonte’s vote for the real BIC decreases based on its heuristic assumption. Thus,
Fonte’s BIC ranking accuracy deteriorates to Top-4 from Top-1 with precise FL information.
However, SemBIC improves the ranking performance from Top-3 to Top-1 as precise FL information
removes the noisy method along the failing path, facilitating the semantic analysis of SemBIC.

Answer to RQ2. SemBIC performs better as the FL results improve. Therefore, we expect that
SemBIC will benefit from more precise and advanced FL techniques in the future. Surprisingly, we
observe that the ranking performance of the baseline technique Fonte deteriorates with perfect
FL results, potentially because of the underlying logic of method design.

5.3 RQ3. Contribution of Semantic Properties.
We further conduct an ablation study to investigate the contribution of each semantic property.
To answer this question, we use each semantic property separately and compare the BIC ranking
accuracy to that achieved using the complete set of semantic properties.
Table 3 presents the ranking accuracy of SemBIC with each semantic property respectively,

with FONTE serving as the baseline for comparison. Overall, SemBIC with all semantic properties
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combined (i.e., SemBIC) consistently outperforms Fonte and other configurations across all eval-
uation metrics. Fonte has significantly lower accuracy across all metrics when compared to all
variations of SemBIC. For example, in Top-1, Fonte achieves 28.14% accuracy, while the lowest
among SemBIC variations is 76.38% (i.e., SemBIC𝐶𝑜𝑛𝑠 ), showing a substantial improvement. Each
variation of SemBIC that uses a single semantic property (i.e., SemBIC𝐶𝑜𝑛𝑠 , SemBIC𝐼𝑛𝑣 , SemBIC𝑅𝑒𝑡 )
performs markedly better than Fonte, suggesting that even correctly considering a single semantic
dimension can significantly enhance the ability to pinpoint BICs. Among all the individual seman-
tic property configurations, SemBIC𝑅𝑒𝑡 performs the best in general. In some instances, SemBIC
performs better with a specific semantic property (e.g., using only return statement results in more
subjects having their BICs ranked in the Top-10 compared to using all semantic properties). This
is because the root causes of these bugs lies in a specific semantic property. Using all semantic
properties can introduce noise into the BIC identification process for these bugs.

Answer to RQ3. Semantic information plays a critical role in commit ranking for BIC identifica-
tion. All the three properties contribute to the semantics summary. Our experiment results also
underscore the importance of a multi-dimensional semantic analysis in enhancing the accuracy
of BIC identification processes.

6 Related Work
BIC Identification. Existing techniques designed for identifying BICs can be summarized into
three categories in general, i.e., dynamic, semi-dynamic and static approaches. Bisection [9] and its
variants [2] are pure dynamic-based tools, requiring expensive test executions on historical commits
during the binary search. Also, the dependency incompatibility issue hinders the automation of
Bisection. Compared to dynamic analysis, static approaches incur lower overhead but often suffer
from compromised precision. SZZ [39] and its variants [4, 11, 12, 23, 36] require the knowledge
of BFCs, which might not be available at the debugging time. The main idea is to find the latest
commit that shares the code changes lines with the BFC. Locus [46], Orca [3], FBL-BERT [7] and
Bug2Commit [28] are IR-based methods, constituting another category of static BIC identification
techniques, that heavily depend on additional information like high-quality bug reports or commit
messages, potentially making them unsuitable in practice [31]. Semi-dynamic approaches enjoy
the advantages of both dynamic execution and static analysis. They leverage the test runtime
execution information against only one commit and analyzes the remaining commits statically.
ChangeLocator [51] leverages the call stack information to identify BICs for fixed crashes based
on learning a model. The SOTA technique Fonte [2] considers the commit submission time as a
heuristic for identifying BICs, though it may not be effective when the heuristic is invalid. The
approach SemBIC proposed by this paper is also semi-dynamic. The major difference is that SOTA
Fonte is a lightweight tool that relies on predefined rules, whereas SemBIC addresses the root
cause of bugs by conducting effective and practical static semantic analysis using failing path
information obtained from a single execution. Moreover, there are highly relevant works that
are not specifically designed for the BIC identification task. FaultLocator [54] aims to identify
suspicious atomic code edits given two program versions via change impact analysis. Similarly, it
uses code-level FL information to identify suspicious code edits.
Just-in-time Defective Commit Prediction. Just-in-time (JIT) defect prediction is a binary

classification task. It decides whether the code changes that are defective upon the commits were
submitted in order to notify developers in time for further inspection [38]. CCT5 [25] is the SOTA
JIT defect prediction technique that is built on top of T5 model [32] but fine-tuned specifically
for code change information. Though JIT defect prediction can provide timely help upon commit
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submission, the binary classification result does not contain concrete information related to the
bug type or location. In other words, even when a JIT defect prediction tool identifies a defective
commit, developers still lack information about the consequences of the bugs, such as which failing
tests will be triggered, where the bugs are located, and when the bugs were introduced.

7 Threats to Validity
We discuss three threats that may affect our work’s validity. First, the unseen cases may affect the
generality of SemBIC. Our evaluation experiments are conducted with subjects in Defects4J dataset.
To reduce this threat, we use subjects originally from 12 different open source projects. Since all
projects are written in Java and maintained by Git, it could happen that any finding is not directly
translatable to other projects, to other languages, or to projects with different characteristics. Note
that we assume the test failure is caused by a bug existing in the executable code files (i.e., Java
source code in our implementation). Thus, SemBIC does not generalize to bugs that are caused by
non-executable files (e.g., configuration files). Second, we are concerned that the information used
in IR-based baselines may affect the validity of evaluation results. As Bug2Commit and FBL-BERT
rely on multiple sources of information (e.g., bug reports), the choice of information affects the
comparison results. We follow the setup of these two techniques from An et al. to use bug reports
as the information source, so as to ensure the evaluation fairness. Third, the accuracy of failure
reproduction is crucial in failing path collection. Since the buggy commit provided by Defects4J is a
version minimized according to each bug, its program behaviors during failing test execution might
be slightly different from the real faulty version in the commit history. To mitigate this threat, we
check the JUnit test reports generated on the real faulty commit during failing test reproduction
and compare them with the test reports generated on the buggy commits provided by Defects4J to
ensure that they report the same bugs.

8 Conclusion
Commits that introduce bugs into the software, known as bug-inducing commits (BICs), can provide
critical information for debugging, which is challenging to identify in constantly evolving software
systems. Motivated by the observation that a BIC typically introduces significant semantic changes
resulting in a failing test, we propose SemBIC, a static approach to identify BIC of a bug by tracking
the semantic changes associated with its failing test across a series of commits. The evaluation
reveals the effectiveness of SemBIC. It ranks the actual BICs in the top position for 88 out of
the 199 bugs and achieves an MRR of 0.520, surpassing the SOTA technique by 29.4% and 13.6%,
respectively.

9 Data Availability
The experiment replication package of this paper is available at https://doi.org/10.5281/zenodo.
14840934 [6].
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